NeuroSOFM-Classifier: A Low Power Classifier Using Continuous Real-Time Unsupervised Clustering

Siddharth Barve, R. Jha
{"title":"NeuroSOFM-Classifier: A Low Power Classifier Using Continuous Real-Time Unsupervised Clustering","authors":"Siddharth Barve, R. Jha","doi":"10.1145/3565478.3572532","DOIUrl":null,"url":null,"abstract":"Supervised machine learning techniques are becoming subject of significant interest in data analysis. However, the high memory bandwidth requirement of current implementations and scarcity of labeled data in many applications prevents implementation of supervised machine learning techniques. In this work, we propose a neuromorphic architecture implementing the self-organizing feature map algorithm using ferroelectric field-effect transistors (Fe-FETs) and gated-resistive random-access memory (gated-RRAM) to produce a semi-supervised NeuroSOFM-Classifier. A best matching input (BMI) identifier circuit allows for very few labeled samples to be used to provide supervised class labels for each neuron in the NeuroSOFM-Classifier. The best matching unit (BMU) or neuron for consequent samples can then be used to inference or classify the new data. This NeuroSOFM-Classifier, trained on just 1% of the labeled data, is capable of classifying COVID-19 patient chest x-rays with 96% accuracy.","PeriodicalId":125590,"journal":{"name":"Proceedings of the 17th ACM International Symposium on Nanoscale Architectures","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Symposium on Nanoscale Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565478.3572532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised machine learning techniques are becoming subject of significant interest in data analysis. However, the high memory bandwidth requirement of current implementations and scarcity of labeled data in many applications prevents implementation of supervised machine learning techniques. In this work, we propose a neuromorphic architecture implementing the self-organizing feature map algorithm using ferroelectric field-effect transistors (Fe-FETs) and gated-resistive random-access memory (gated-RRAM) to produce a semi-supervised NeuroSOFM-Classifier. A best matching input (BMI) identifier circuit allows for very few labeled samples to be used to provide supervised class labels for each neuron in the NeuroSOFM-Classifier. The best matching unit (BMU) or neuron for consequent samples can then be used to inference or classify the new data. This NeuroSOFM-Classifier, trained on just 1% of the labeled data, is capable of classifying COVID-19 patient chest x-rays with 96% accuracy.
NeuroSOFM-Classifier:使用连续实时无监督聚类的低功耗分类器
监督式机器学习技术正在成为数据分析领域的重要研究课题。然而,当前实现的高内存带宽需求和许多应用中标记数据的稀缺性阻碍了监督机器学习技术的实现。在这项工作中,我们提出了一种使用铁电场效应晶体管(fe - fet)和门控电阻随机存取存储器(gate - rram)实现自组织特征映射算法的神经形态架构,以产生半监督神经sofm分类器。最佳匹配输入(BMI)标识电路允许使用很少的标记样本来为NeuroSOFM-Classifier中的每个神经元提供监督类标签。最佳匹配单元(BMU)或后续样本的神经元可以用来推断或分类新数据。这个NeuroSOFM-Classifier仅使用1%的标记数据进行训练,能够以96%的准确率对COVID-19患者的胸部x射线进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信