Remote sensing image classification based on SVM classifier

H. Yan
{"title":"Remote sensing image classification based on SVM classifier","authors":"H. Yan","doi":"10.1109/ICSSEM.2011.6081213","DOIUrl":null,"url":null,"abstract":"How to choose the kernel function of the SVM classifier and function's parameters affects system's generalization and operating speed directly. It takes Cross Validation and Grid Search to validate the performance of Radial Basis Kernel, Polynomial Kernel and Sigmoid Kernel functions in Multi-class Classification, which can not only deduce the capability of SVM but also prove the effectiveness of Grid Search in finding optimized characteristics. Finally, the three SVM classifier kernel functions are used to classify BSQ remote sensing images in TM6 band, and the experimental data prove their feasibility and high efficiency.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

How to choose the kernel function of the SVM classifier and function's parameters affects system's generalization and operating speed directly. It takes Cross Validation and Grid Search to validate the performance of Radial Basis Kernel, Polynomial Kernel and Sigmoid Kernel functions in Multi-class Classification, which can not only deduce the capability of SVM but also prove the effectiveness of Grid Search in finding optimized characteristics. Finally, the three SVM classifier kernel functions are used to classify BSQ remote sensing images in TM6 band, and the experimental data prove their feasibility and high efficiency.
基于SVM分类器的遥感图像分类
如何选择支持向量机分类器的核函数和函数参数直接影响系统的泛化和运行速度。通过交叉验证和网格搜索来验证径向基核、多项式核和Sigmoid核函数在多类分类中的性能,不仅可以推断支持向量机的能力,而且可以证明网格搜索在寻找最优特征方面的有效性。最后,将三种SVM分类器核函数用于TM6波段的BSQ遥感图像分类,实验数据证明了其可行性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信