The Phase Problem of X-Ray Crystallography from the Viewpoint of Signal Recovery

G. Bricogne
{"title":"The Phase Problem of X-Ray Crystallography from the Viewpoint of Signal Recovery","authors":"G. Bricogne","doi":"10.1364/srs.1983.fa12","DOIUrl":null,"url":null,"abstract":"The diffraction of X-rays by crystals was discovered in 1912 by Laue who proposed a theory of the phenomenon based on its analogy with optical diffraction by gratings. It is most easily understood from the standpoint of Fourier analysis, in which language it was reformulated shortly afterwards. The electron density in a crystal is periodic, and may therefore be conceived as a superposition of plane waves whose wave vectors belong to a \"reciprocal lattice\" dual to the crystal lattice. The contribution of each wave, or system of fringes, is described by a complex Fourier coefficient, whose amplitude gives the strength of this system of fringes, and whose phase determines the position of the fringes relative to some fixed origin. If all the amplitudes and phases of these waves are known, it is possible to obtain a picture of the electron distribution in the crystal by superposing them; that is, by a simple Fourier synthesis.","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1983.fa12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The diffraction of X-rays by crystals was discovered in 1912 by Laue who proposed a theory of the phenomenon based on its analogy with optical diffraction by gratings. It is most easily understood from the standpoint of Fourier analysis, in which language it was reformulated shortly afterwards. The electron density in a crystal is periodic, and may therefore be conceived as a superposition of plane waves whose wave vectors belong to a "reciprocal lattice" dual to the crystal lattice. The contribution of each wave, or system of fringes, is described by a complex Fourier coefficient, whose amplitude gives the strength of this system of fringes, and whose phase determines the position of the fringes relative to some fixed origin. If all the amplitudes and phases of these waves are known, it is possible to obtain a picture of the electron distribution in the crystal by superposing them; that is, by a simple Fourier synthesis.
从信号恢复的角度看x射线晶体学的相位问题
晶体对x射线的衍射是劳厄在1912年发现的,他根据晶体对x射线的衍射与光栅衍射的类比提出了一种理论。从傅里叶分析的角度来看,这是最容易理解的,不久之后,傅里叶分析的语言就被重新表述了。晶体中的电子密度是周期性的,因此可以认为是平面波的叠加,平面波的波矢量属于与晶格对偶的“倒易晶格”。每个波或条纹系统的贡献用复傅立叶系数来描述,其振幅决定了该条纹系统的强度,其相位决定了条纹相对于某个固定原点的位置。如果已知这些波的所有振幅和相位,就有可能通过叠加它们来获得晶体中电子分布的图像;也就是说,通过简单的傅里叶合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信