GPU implementation of spatial preprocessing for spectral unmixing of hyperspectral data

Jaime Delgado, G. Martín, J. Plaza, L. Jimenez, A. Plaza
{"title":"GPU implementation of spatial preprocessing for spectral unmixing of hyperspectral data","authors":"Jaime Delgado, G. Martín, J. Plaza, L. Jimenez, A. Plaza","doi":"10.1109/IGARSS.2015.7326966","DOIUrl":null,"url":null,"abstract":"The integration of spatial information into spectral unmixing process has attracted much attention in recent years. Several approaches have been developed to incorporate spatial considerations into the endmember extraction/estimation procedure. Spatial preprocessing algorithms are one of the most commonly adopted techniques to guide endmember identification algorithms in terms of the spatial characteristics of the hyperspectral data. Particularly, spatial preprocessing algorithm (SPP) consists on a preprocessing technique that can be used prior to most of existing spectral-based endmember extraction process, thus promoting the selection of endmem-bers from the most spatially homogeneous regions of the data set. This paper presents a parallel implementation of SPP algorithm which is tested over two different graphic processing units (GPUs) architectures: NVidiaTMGeForce GTX 580 and NVidiaTMGeForce GTX 870M. Experimental validation using a hyperspectral data set collected by AVIRIS sensor shows that it is possible to achieve real-time performance.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The integration of spatial information into spectral unmixing process has attracted much attention in recent years. Several approaches have been developed to incorporate spatial considerations into the endmember extraction/estimation procedure. Spatial preprocessing algorithms are one of the most commonly adopted techniques to guide endmember identification algorithms in terms of the spatial characteristics of the hyperspectral data. Particularly, spatial preprocessing algorithm (SPP) consists on a preprocessing technique that can be used prior to most of existing spectral-based endmember extraction process, thus promoting the selection of endmem-bers from the most spatially homogeneous regions of the data set. This paper presents a parallel implementation of SPP algorithm which is tested over two different graphic processing units (GPUs) architectures: NVidiaTMGeForce GTX 580 and NVidiaTMGeForce GTX 870M. Experimental validation using a hyperspectral data set collected by AVIRIS sensor shows that it is possible to achieve real-time performance.
高光谱数据空间预处理的GPU实现
将空间信息整合到光谱分解过程中是近年来备受关注的问题。已经开发了几种方法来将空间因素纳入端元提取/估计过程。根据高光谱数据的空间特征,空间预处理算法是指导端元识别算法最常用的技术之一。特别是,空间预处理算法(SPP)包含一种预处理技术,可以在大多数现有的基于光谱的端元提取过程之前使用,从而促进从数据集空间上最均匀的区域中选择端元。本文提出了SPP算法的并行实现,并在两种不同的图形处理单元(gpu)架构上进行了测试:NVidiaTMGeForce GTX 580和NVidiaTMGeForce GTX 870M。利用AVIRIS传感器采集的高光谱数据集进行实验验证,表明可以实现实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信