{"title":"Asymptotically Distribution-Free Goodness-of-Fit Testing for Copulas","authors":"S. Can, J. Einmahl, R. Laeven","doi":"10.2139/ssrn.3089612","DOIUrl":null,"url":null,"abstract":"Consider a random sample from a continuous multivariate distribution function F with copula C. In order to test the null hypothesis that C belongs to a certain parametric family, we construct an under H0 asymptotically distribution-free process that serves as a tests generator. The process is a transformation of the difference of a semi-parametric and a parametric estimator of C. This transformed empirical process converges weakly to a standard multivariate Wiener process, paving the way for a multitude of powerful asymptotically distribution-free goodness-of-fit tests for copula families. We investigate the finite-sample performance of our approach through a simulation study and illustrate its applicability with a data analysis.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3089612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Consider a random sample from a continuous multivariate distribution function F with copula C. In order to test the null hypothesis that C belongs to a certain parametric family, we construct an under H0 asymptotically distribution-free process that serves as a tests generator. The process is a transformation of the difference of a semi-parametric and a parametric estimator of C. This transformed empirical process converges weakly to a standard multivariate Wiener process, paving the way for a multitude of powerful asymptotically distribution-free goodness-of-fit tests for copula families. We investigate the finite-sample performance of our approach through a simulation study and illustrate its applicability with a data analysis.