LPC and LPCC method of feature extraction in Speech Recognition System

Harshita Gupta, Divya Gupta
{"title":"LPC and LPCC method of feature extraction in Speech Recognition System","authors":"Harshita Gupta, Divya Gupta","doi":"10.1109/CONFLUENCE.2016.7508171","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition (ASR) has been under the scrutiny of researchers for many years. Speech Recognition System is the ability to listen what we speak, interpreter and perform actions according to spoken information. After so many detailed study and optimization of ASR and various techniques of features extraction, accuracy of the system is still a big challenge. The selection of feature extraction techniques is completely based on the area of study. In this paper, a detailed theory about features extraction techniques like LPC and LPCC is examined. The goal of this paper is to study the comparative analysis of features extraction techniques like LPC and LPCC.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Automatic speech recognition (ASR) has been under the scrutiny of researchers for many years. Speech Recognition System is the ability to listen what we speak, interpreter and perform actions according to spoken information. After so many detailed study and optimization of ASR and various techniques of features extraction, accuracy of the system is still a big challenge. The selection of feature extraction techniques is completely based on the area of study. In this paper, a detailed theory about features extraction techniques like LPC and LPCC is examined. The goal of this paper is to study the comparative analysis of features extraction techniques like LPC and LPCC.
语音识别系统中LPC和LPCC特征提取方法
自动语音识别(ASR)多年来一直受到研究人员的关注。语音识别系统是一种能够听我们所说的话,并根据我们所说的信息进行翻译和执行动作的能力。经过对ASR和各种特征提取技术的详细研究和优化,系统的准确性仍然是一个很大的挑战。特征提取技术的选择完全基于研究领域。本文对LPC和LPCC等特征提取技术进行了详细的理论研究。本文的目的是研究LPC和LPCC两种特征提取技术的对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信