Stochastic bifurcation analysis of a generalized Van der Pol oscillator with fractional derivative under Gaussian white noise

Yajie Li, Qixun Lan
{"title":"Stochastic bifurcation analysis of a generalized Van der Pol oscillator with fractional derivative under Gaussian white noise","authors":"Yajie Li, Qixun Lan","doi":"10.23919/CCC50068.2020.9189404","DOIUrl":null,"url":null,"abstract":"The stochastic P-bifurcation behavior of bi-stability in a generalized Van der Pol oscillator with a fractional damping under multiplicative Gaussian white noise excitation is investigated. Firstly, using the principle of minimal mean square error, the nonlinear stiffness terms can be equivalent to a linear stiffness which is a function of the system amplitude, and the original system is simplified to an equivalent integer order Van der Pol system. Secondly, the system amplitude’s stationary Probability Density Function (PDF) is obtained by stochastic averaging. And then according to the singularity theory, the critical parametric conditions for the system amplitude’s stochastic P-bifurcation are found. Finally, the types of the system’s stationary PDF curves of amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical results and the numerical results obtained from Monte Carlo simulation verifies the theoretical analysis in this paper and the method used in this paper can directly guide the design of the fractional order controller to adjust the response of the system.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic P-bifurcation behavior of bi-stability in a generalized Van der Pol oscillator with a fractional damping under multiplicative Gaussian white noise excitation is investigated. Firstly, using the principle of minimal mean square error, the nonlinear stiffness terms can be equivalent to a linear stiffness which is a function of the system amplitude, and the original system is simplified to an equivalent integer order Van der Pol system. Secondly, the system amplitude’s stationary Probability Density Function (PDF) is obtained by stochastic averaging. And then according to the singularity theory, the critical parametric conditions for the system amplitude’s stochastic P-bifurcation are found. Finally, the types of the system’s stationary PDF curves of amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical results and the numerical results obtained from Monte Carlo simulation verifies the theoretical analysis in this paper and the method used in this paper can directly guide the design of the fractional order controller to adjust the response of the system.
高斯白噪声下分数阶微分广义Van der Pol振荡器的随机分岔分析
研究了乘高斯白噪声激励下分数阶阻尼广义Van der Pol振子双稳定性的随机p分岔行为。首先,利用均方误差最小原理,将非线性刚度项等效为系统幅值函数的线性刚度项,将原系统简化为等效的整数阶Van der Pol系统;其次,通过随机平均得到系统幅值的平稳概率密度函数;然后根据奇异性理论,得到了系统振幅随机p分岔的临界参数条件。最后,通过在过渡集曲线划分的每个区域中选择相应的参数,定性分析了系统振幅平稳PDF曲线的类型。分析结果与蒙特卡罗仿真得到的数值结果的一致性验证了本文理论分析的正确性,本文所采用的方法可以直接指导分数阶控制器的设计来调节系统的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信