News recommendation in Indonesian language based on user click behavior

Diandra Mayang Desyaputri, Alva Erwin, M. Galinium, Didi Nugrahadi
{"title":"News recommendation in Indonesian language based on user click behavior","authors":"Diandra Mayang Desyaputri, Alva Erwin, M. Galinium, Didi Nugrahadi","doi":"10.1109/ICITEED.2013.6676232","DOIUrl":null,"url":null,"abstract":"Recommendation system has been proposed for years as the solution of information era problem. This research strives to develop an intelligent recommendation system based on user click behavior on news websites. We extracted frequent itemsets and association rules from the web server log of a news website, performed a pre-computation of similarity between news articles, and then proposed a three-level recommendation system: based on association rule discovery, news articles on the same category, and similarity between news articles. By combining collaborative filtering approach and content-based filtering, experiment results show that the technique produces reliable news recommendation.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recommendation system has been proposed for years as the solution of information era problem. This research strives to develop an intelligent recommendation system based on user click behavior on news websites. We extracted frequent itemsets and association rules from the web server log of a news website, performed a pre-computation of similarity between news articles, and then proposed a three-level recommendation system: based on association rule discovery, news articles on the same category, and similarity between news articles. By combining collaborative filtering approach and content-based filtering, experiment results show that the technique produces reliable news recommendation.
基于用户点击行为的印尼语新闻推荐
推荐系统作为信息时代问题的解决方案,已经被提出多年。本研究致力于开发一个基于新闻网站用户点击行为的智能推荐系统。从某新闻网站的web服务器日志中提取频繁项集和关联规则,对新闻文章之间的相似度进行预计算,提出基于关联规则发现、同一类别新闻文章、新闻文章之间相似度三级推荐系统。通过将协同过滤方法与基于内容的过滤方法相结合,实验结果表明,该方法能够产生可靠的新闻推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信