Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen
{"title":"Projecting emotional speech into arousal-valence space using pairwise preference learning","authors":"Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen","doi":"10.1109/SPLIM.2016.7528401","DOIUrl":null,"url":null,"abstract":"Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.