Projecting emotional speech into arousal-valence space using pairwise preference learning

Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen
{"title":"Projecting emotional speech into arousal-valence space using pairwise preference learning","authors":"Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen","doi":"10.1109/SPLIM.2016.7528401","DOIUrl":null,"url":null,"abstract":"Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.
利用两两偏好学习将情绪言语投射到唤醒效价空间
语音情感识别是语音处理领域中一个非常具有挑战性的课题。由于人类情感的连续性特征,近年来的研究大多集中在连续空间中的情感识别上。以往的语音情绪标注都是采用连续空间中的likert-like标度系统,并依赖于预测模型来预测情绪,而在本研究中,我们提出了一种基于成对数据标注的数据标注新方法。提出了一组约束来减少标记所需的对数。利用标注后的数据,采用两两进化多元自适应回归样条法构建回归模型。实验表明,与基线随机两两分配相比,识别精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信