Complex Correntropy Induced Metric Applied to Compressive Sensing with Complex-Valued Data

João P. F. Guimarães, A. I. R. Fontes, F. B. D. Silva, A. Martins, R. V. Borries
{"title":"Complex Correntropy Induced Metric Applied to Compressive Sensing with Complex-Valued Data","authors":"João P. F. Guimarães, A. I. R. Fontes, F. B. D. Silva, A. Martins, R. V. Borries","doi":"10.1109/SSIAI.2018.8470371","DOIUrl":null,"url":null,"abstract":"The correntropy induced metric (CIM) is a well- defined metric induced by the correntropy function and has been applied to different problems in signal processing and machine learning, but CIM was limited to the case of real-valued data. This paper extends the CIM to the case of complex- valued data, denoted by Complex Correntropy Induced Metric (CCIM). The new metric preserves the well known benefits of extracting high order statistical information from correntropy, but now dealing with complex-valued data. As an example, the paper shows the CCIM applied in the approximation of ℓ0-minimization in the reconstruction of complex-valued sparse signals in a compressive sensing problem formulation. A mathematical proof is presented as well as simulation results that indicate the viability of the proposed new metric.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The correntropy induced metric (CIM) is a well- defined metric induced by the correntropy function and has been applied to different problems in signal processing and machine learning, but CIM was limited to the case of real-valued data. This paper extends the CIM to the case of complex- valued data, denoted by Complex Correntropy Induced Metric (CCIM). The new metric preserves the well known benefits of extracting high order statistical information from correntropy, but now dealing with complex-valued data. As an example, the paper shows the CCIM applied in the approximation of ℓ0-minimization in the reconstruction of complex-valued sparse signals in a compressive sensing problem formulation. A mathematical proof is presented as well as simulation results that indicate the viability of the proposed new metric.
复熵诱导度量在复值数据压缩感知中的应用
熵诱导度量(CIM)是由熵函数诱导的一种定义良好的度量,已被应用于信号处理和机器学习中的不同问题,但CIM仅限于实值数据的情况。本文将CIM扩展到复值数据的情况,用复熵诱导度量(CCIM)表示。新的度量保留了从熵中提取高阶统计信息的众所周知的好处,但现在处理的是复值数据。作为一个实例,本文展示了CCIM在压缩感知问题公式中复值稀疏信号重构中对最小值的逼近的应用。数学证明和仿真结果表明了所提出的新度量的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信