Analog Digit Electricity Meter Recognition Using Faster R-CNN

Gagah Ghaniswara Khaesarrahman, C. Setianingsih, R. E. Saputra, Dyka Khairullah Zamhari, Erwan Maulana, R. E. Saputra, Raka Zia Insani
{"title":"Analog Digit Electricity Meter Recognition Using Faster R-CNN","authors":"Gagah Ghaniswara Khaesarrahman, C. Setianingsih, R. E. Saputra, Dyka Khairullah Zamhari, Erwan Maulana, R. E. Saputra, Raka Zia Insani","doi":"10.1109/ISMODE56940.2022.10180957","DOIUrl":null,"url":null,"abstract":"The current measurement of electricity consumption use a device called kWh meter that logs the total consumption of electricity, unfortunately to record the data to the electricity provider in Indonesia the employee of the provider still need to come and check the eletrical usage manually. In this paper we created a Deep Learning model based on Faster R-CNN to reads the digit from an analog electricity meter using dataset from the UFPR-AMR Dataset From the training we achieved the best model with the configurations of 90:10 for the data partition split, batch size of 3, learning rate of 0.04, and epoch of 7000 and gained results with accuracy of 99.67%, recall of 98.04%, and precision of 98.04%","PeriodicalId":335247,"journal":{"name":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMODE56940.2022.10180957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current measurement of electricity consumption use a device called kWh meter that logs the total consumption of electricity, unfortunately to record the data to the electricity provider in Indonesia the employee of the provider still need to come and check the eletrical usage manually. In this paper we created a Deep Learning model based on Faster R-CNN to reads the digit from an analog electricity meter using dataset from the UFPR-AMR Dataset From the training we achieved the best model with the configurations of 90:10 for the data partition split, batch size of 3, learning rate of 0.04, and epoch of 7000 and gained results with accuracy of 99.67%, recall of 98.04%, and precision of 98.04%
模拟数字电表识别使用更快的R-CNN
目前的电力消耗测量使用一种叫做千瓦时计的设备来记录总电力消耗,不幸的是,为了将数据记录给印度尼西亚的电力供应商,供应商的员工仍然需要来手工检查电力使用情况。本文使用upr - amr数据集的数据集,建立了基于Faster R-CNN的深度学习模型,从模拟电表中读取数字。通过训练,我们获得了数据分区分割配置为90:10,批大小为3,学习率为0.04,epoch为7000的最佳模型,结果准确率为99.67%,召回率为98.04%,精度为98.04%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信