Anderson Luis Cavalcanti Sales, R. H. Vareto, W. R. Schwartz, Guillermo Cámara Chávez
{"title":"Single-Shot Person Re-Identification Combining Similarity Metrics and Support Vectors","authors":"Anderson Luis Cavalcanti Sales, R. H. Vareto, W. R. Schwartz, Guillermo Cámara Chávez","doi":"10.1109/SIBGRAPI.2018.00039","DOIUrl":null,"url":null,"abstract":"Person Re-Identification is all about determining a person's entire course as s/he walks around camera-equipped zones. More precisely, person Re-ID is the problem of matching human identities captured from non-overlapping surveillance cameras. In this work, we propose an approach that learns a new low-dimensional metric space in an attempt to cut down multi-camera matching errors. We represent the training and test samples by concatenating handcrafted features. Then, the method performs a two-step ranking using elementary distance metrics and followed by an ensemble of weighted binary classifiers. We validate our approach on CUHK01 and PRID450s datasets, providing only a sample per class for probe and only a sample for gallery (single-shot). According to the experiments, our method achieves CMC Rank-1 results up to 61.1 and 75.4, following leading literature protocols, for CUHK01 and PRID450s, respectively.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Person Re-Identification is all about determining a person's entire course as s/he walks around camera-equipped zones. More precisely, person Re-ID is the problem of matching human identities captured from non-overlapping surveillance cameras. In this work, we propose an approach that learns a new low-dimensional metric space in an attempt to cut down multi-camera matching errors. We represent the training and test samples by concatenating handcrafted features. Then, the method performs a two-step ranking using elementary distance metrics and followed by an ensemble of weighted binary classifiers. We validate our approach on CUHK01 and PRID450s datasets, providing only a sample per class for probe and only a sample for gallery (single-shot). According to the experiments, our method achieves CMC Rank-1 results up to 61.1 and 75.4, following leading literature protocols, for CUHK01 and PRID450s, respectively.