Adaptive Subsurface Visualization System Using Phase Retrieval Method and Complex-Valued Self-Organizing Map

S. Shimomura, A. Hirose
{"title":"Adaptive Subsurface Visualization System Using Phase Retrieval Method and Complex-Valued Self-Organizing Map","authors":"S. Shimomura, A. Hirose","doi":"10.23919/PIERS.2018.8598229","DOIUrl":null,"url":null,"abstract":"We propose an adaptive subsurface visualization system based on a complex-valued self-organizing map (CSOM). Conventionally buried things can be detected in so-called B-scan images obtained by a ground penetrating radar. In contrast, our proposed method is able not only to detect their presence, but also to classify the targets by the self-organizing dynamics in the CSOM. Instead of utilizing only the amplitude information in the time domain, we use both the amplitude and phase information to obtain the scattering coefficients of the targets by use of the phase retrieval method. The CSOM classifies the obtained scattering coefficients to realize an automatic categorization of the targets that scatter the radar electromagnetic wave.","PeriodicalId":355217,"journal":{"name":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PIERS.2018.8598229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an adaptive subsurface visualization system based on a complex-valued self-organizing map (CSOM). Conventionally buried things can be detected in so-called B-scan images obtained by a ground penetrating radar. In contrast, our proposed method is able not only to detect their presence, but also to classify the targets by the self-organizing dynamics in the CSOM. Instead of utilizing only the amplitude information in the time domain, we use both the amplitude and phase information to obtain the scattering coefficients of the targets by use of the phase retrieval method. The CSOM classifies the obtained scattering coefficients to realize an automatic categorization of the targets that scatter the radar electromagnetic wave.
基于相位检索和复值自组织映射的自适应地下可视化系统
提出了一种基于复值自组织映射(CSOM)的自适应地下可视化系统。通常埋在地下的东西可以通过探地雷达获得的所谓b扫描图像来检测。相比之下,我们提出的方法不仅可以检测到目标的存在,而且可以通过CSOM中的自组织动力学对目标进行分类。在时域中,我们不再只利用振幅信息,而是同时利用振幅和相位信息,利用相位恢复方法获得目标的散射系数。CSOM对得到的散射系数进行分类,实现对雷达电磁波散射目标的自动分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信