Population Dynamics for Discrete Wasserstein Gradient Flows over Networks

Gilberto Díaz-García, César A. Uribe, N. Quijano
{"title":"Population Dynamics for Discrete Wasserstein Gradient Flows over Networks","authors":"Gilberto Díaz-García, César A. Uribe, N. Quijano","doi":"10.52591/202107241","DOIUrl":null,"url":null,"abstract":"We study the problem of minimizing a convex function over probability measures supported in a graph. We build upon the recent formulation of optimal transport over discrete domains to propose a method that generates a sequence that provably converges to a minimum of the objective function and smoothly transports mass over the edges of the graph. Moreover, we identify novel relation between Riemannian gradient flows and perturbed best response protocols that provide sufficient conditions for the convergence of the proposed algorithm. Numerical results show practical advantages over existing approaches with respect to the implementability and convergence rates.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/202107241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of minimizing a convex function over probability measures supported in a graph. We build upon the recent formulation of optimal transport over discrete domains to propose a method that generates a sequence that provably converges to a minimum of the objective function and smoothly transports mass over the edges of the graph. Moreover, we identify novel relation between Riemannian gradient flows and perturbed best response protocols that provide sufficient conditions for the convergence of the proposed algorithm. Numerical results show practical advantages over existing approaches with respect to the implementability and convergence rates.
网络上离散Wasserstein梯度流的种群动力学
我们研究了在图中支持的概率测度上最小化凸函数的问题。我们建立在离散域上最优传输的最新公式的基础上,提出了一种方法,该方法生成一个序列,该序列可证明收敛到目标函数的最小值,并在图的边缘上平滑地传输质量。此外,我们还发现了黎曼梯度流与扰动最佳响应协议之间的新关系,为算法的收敛性提供了充分的条件。数值结果表明,该方法在可实现性和收敛速度方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信