Estimation of software defects fix effort using neural networks

Hui Zeng, D. Rine
{"title":"Estimation of software defects fix effort using neural networks","authors":"Hui Zeng, D. Rine","doi":"10.1109/CMPSAC.2004.1342658","DOIUrl":null,"url":null,"abstract":"Software defects fix effort is an important software development process metric that plays a critical role in software quality assurance. People usually like to apply parametric effort estimation techniques using historical lines of code and function points data to estimate effort of defects fixes. However, these techniques are neither efficient nor effective for a new different kind of project's fixing defects when code will be written within the context of a different project or organization. In this paper, we present a solution for estimating software defect fix effort using self-organizing neural networks.","PeriodicalId":355273,"journal":{"name":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2004.1342658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Software defects fix effort is an important software development process metric that plays a critical role in software quality assurance. People usually like to apply parametric effort estimation techniques using historical lines of code and function points data to estimate effort of defects fixes. However, these techniques are neither efficient nor effective for a new different kind of project's fixing defects when code will be written within the context of a different project or organization. In this paper, we present a solution for estimating software defect fix effort using self-organizing neural networks.
用神经网络估计软件缺陷修复的工作量
软件缺陷修复工作是一个重要的软件开发过程度量,在软件质量保证中起着至关重要的作用。人们通常喜欢使用使用历史代码行和功能点数据的参数化工作量估计技术来估计缺陷修复的工作量。然而,当代码将在不同的项目或组织的上下文中编写时,这些技术对于新的不同类型的项目修复缺陷既不高效也不有效。本文提出了一种利用自组织神经网络估计软件缺陷修复工作量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信