Complete forcing numbers of rectangular polynominoes

Hong Chang, Yongqi Feng, H. Bian, Shoujun Xu
{"title":"Complete forcing numbers of rectangular polynominoes","authors":"Hong Chang, Yongqi Feng, H. Bian, Shoujun Xu","doi":"10.32817/AMS.1.1.7","DOIUrl":null,"url":null,"abstract":"Let G be a graph with edge set E(G) that admits a perfect matching M. A forcing set of M is a subset of M contained in no other perfect matchings of G. A complete forcing set of G, recently introduced by Xu et al. [Complete forcing numbers of catacondensed hexagonal systems, J. Combin. Optim. 29(4) (2015) 803-814], is a subset of E(G) on which the restriction of any perfect matching M is a forcing set of M. The minimum possible cardinality of complete forcing sets of G is the complete forcing number of G. In this article, we discuss the complete forcing number of rectangular polyominoes (or grids), i.e., the Cartesian product of two paths of various lengths, and show explicit formulae for the complete forcing numbers of rectangular polyominoes in terms of the lengths.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/AMS.1.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let G be a graph with edge set E(G) that admits a perfect matching M. A forcing set of M is a subset of M contained in no other perfect matchings of G. A complete forcing set of G, recently introduced by Xu et al. [Complete forcing numbers of catacondensed hexagonal systems, J. Combin. Optim. 29(4) (2015) 803-814], is a subset of E(G) on which the restriction of any perfect matching M is a forcing set of M. The minimum possible cardinality of complete forcing sets of G is the complete forcing number of G. In this article, we discuss the complete forcing number of rectangular polyominoes (or grids), i.e., the Cartesian product of two paths of various lengths, and show explicit formulae for the complete forcing numbers of rectangular polyominoes in terms of the lengths.
矩形多项式的完全强迫数
设G为边集E(G)的图,边集E(G)允许存在完美匹配M。M的强迫集是M的子集,不包含其他G的完美匹配。G的完全强迫集,最近由Xu等人引入。[catconconsed六边形系统的完全强迫数,J. Combin。]Optim。29(4)(2015)803 - 814年),是E (G)的一个子集的限制任何完美匹配M是一套迫使M G的最短完成迫使集的基数是完整的G .迫使数量在这篇文章中,我们将讨论完整的矩形polyominoes迫使数(或网格),也就是说,不同长度的笛卡儿积的两条路径,并显示显式公式完整的矩形polyominoes迫使数字的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信