{"title":"Ammonia Nitrogen Monitoring of Urban Rivers with UAV-Borne Hyperspectral Remote Sensing Imagery","authors":"Zhou Wang, Lifei Wei, Chujun He, Qikai Lu","doi":"10.1109/IGARSS47720.2021.9554632","DOIUrl":null,"url":null,"abstract":"Ammonia nitrogen (NH4-N) can cause water eutrophication and is the main oxygen-consuming pollutant in water bodies. Remote sensing methods are more macroscopic than traditional measurement methods. However, due to the weak optical characteristics of NH4-N, traditional remote sensing data cannot meet the needs of NH4-N monitoring. In response to this problem, this paper attempts to use unmanned aerial vehicles (UAV) hyperspectral imagery combined with extreme gradient boosting (XGBoost)regression algorithm to quantitatively retrieve NH4-N in urban rivers. The results show that compared with the traditional empirical semi-empirical model, the accuracy of using the XGBoost algorithm to estimate the NH4-N in the water body is significantly improved, and is consistent with the field measurement.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Ammonia nitrogen (NH4-N) can cause water eutrophication and is the main oxygen-consuming pollutant in water bodies. Remote sensing methods are more macroscopic than traditional measurement methods. However, due to the weak optical characteristics of NH4-N, traditional remote sensing data cannot meet the needs of NH4-N monitoring. In response to this problem, this paper attempts to use unmanned aerial vehicles (UAV) hyperspectral imagery combined with extreme gradient boosting (XGBoost)regression algorithm to quantitatively retrieve NH4-N in urban rivers. The results show that compared with the traditional empirical semi-empirical model, the accuracy of using the XGBoost algorithm to estimate the NH4-N in the water body is significantly improved, and is consistent with the field measurement.