Compensation of Model Errors in Electrocardiographic Imaging Using Bayesian Estimation

Furkan Aldemir, Y. S. Dogrusoz
{"title":"Compensation of Model Errors in Electrocardiographic Imaging Using Bayesian Estimation","authors":"Furkan Aldemir, Y. S. Dogrusoz","doi":"10.23919/cinc53138.2021.9662933","DOIUrl":null,"url":null,"abstract":"Bayesian Maximum a Posteriori (MAP) estimation has been successfully applied to electrocardiographic imaging (ECGI). However, in most studies, MAP deals only with the measurement noise and ignores the forward model errors. In this study, we incorporated model uncertainty in the MAP formulation to improve the inverse reconstructions. Measured electrograms (EGM) from the University of Utah were used to form training and test datasets. Body surface potential (BSP) measurements were simulated at 30 dB SNR. The inverse problem was solved using MAP estimation. The training dataset was used to define the prior probability function (pdf). Both the measurement noise and model error were assumed to be uncorrelated with the EGMs. Model error was introduced as shift in the heart position and scaling of the heart size. Three model error pdfs were considered: no compensation (model error is assumed as zero in the solution); model error is modeled as independent and identically distributed (IID) and correlated across leads (CORR). For IID and CORR, pdf was estimated based on all geometry disturbances. Results were evaluated using spatial (sCC) and temporal (tCC) correlation coefficients. These results showed that including model errors in the MAP formulation, even in a simple form such as the IID, improved the reconstructions over ignoring them.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian Maximum a Posteriori (MAP) estimation has been successfully applied to electrocardiographic imaging (ECGI). However, in most studies, MAP deals only with the measurement noise and ignores the forward model errors. In this study, we incorporated model uncertainty in the MAP formulation to improve the inverse reconstructions. Measured electrograms (EGM) from the University of Utah were used to form training and test datasets. Body surface potential (BSP) measurements were simulated at 30 dB SNR. The inverse problem was solved using MAP estimation. The training dataset was used to define the prior probability function (pdf). Both the measurement noise and model error were assumed to be uncorrelated with the EGMs. Model error was introduced as shift in the heart position and scaling of the heart size. Three model error pdfs were considered: no compensation (model error is assumed as zero in the solution); model error is modeled as independent and identically distributed (IID) and correlated across leads (CORR). For IID and CORR, pdf was estimated based on all geometry disturbances. Results were evaluated using spatial (sCC) and temporal (tCC) correlation coefficients. These results showed that including model errors in the MAP formulation, even in a simple form such as the IID, improved the reconstructions over ignoring them.
基于贝叶斯估计的心电图成像模型误差补偿
贝叶斯极大后验估计(MAP)已成功应用于心电图成像(ECGI)。然而,在大多数研究中,MAP只处理测量噪声,而忽略了正演模型误差。在本研究中,我们将模型不确定性纳入MAP公式,以改进逆重构。来自犹他大学的测量电图(EGM)被用于形成训练和测试数据集。在30 dB信噪比下模拟体表电位(BSP)测量。利用MAP估计求解逆问题。使用训练数据集定义先验概率函数(pdf)。假设测量噪声和模型误差与egm无关。模型误差包括心脏位置的偏移和心脏大小的缩放。考虑三种模型误差pdf:无补偿(假设模型误差在解中为零);模型误差建模为独立同分布(IID)和跨导联相关(CORR)。对于IID和CORR, pdf是基于所有几何扰动估计的。使用空间(sCC)和时间(tCC)相关系数对结果进行评估。这些结果表明,在MAP公式中包含模型误差,即使是在简单的形式(如IID)中,也比忽略它们更能改善重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信