Stability of the delay logistic equation of population dynamics

M. Vagina
{"title":"Stability of the delay logistic equation of population dynamics","authors":"M. Vagina","doi":"10.1109/PHYCON.2003.1236839","DOIUrl":null,"url":null,"abstract":"The nonlinear logistic equation dy/dt=/spl epsiv/y(t) (1-/spl Sigma//sub k=0/ /sup n/b/sub k/y(t-/spl tau//sub k/), /spl epsiv/>0, b/sub k/, /spl tau//spl isin/(0;/spl infin/) (0/spl les/k/spl les/n) is discussed. The local stability of the nonzero stationary solution of this equation depends on the stability of linear equation dx/dt=-/spl Sigma//sub k=1/ /sup n/ a/sub k/x(t-/spl tau//sub k/), where a/sub k/=/spl epsiv/b/sub k///spl Sigma//sub j=0/ /sup n/b/sub j/ (0/spl les/k/spl les/n). It is shown that the condition /spl Sigma//sub k=1/ /sup n/a/sub k//spl tau//sub k/</spl pi//2 is sufficient for zero solution stability of linear equation. We prove, that there is no restriction above on the value /spl Sigma//sub k=1/ /sup n/a/sub k//spl tau//sub k/ which is necessary for the stability of linear equation. It disproves one of the propositions of K. Gopalsamy. It is shown that, if all the delays /spl tau//sub k/ are multiples of one of them: /spl tau//sub k/=k/spl tau/(/spl tau/>0, k=0,l, ..., n), then the stationary solution y/spl equiv/1//spl Sigma//sub k=0/ /sup n/b/sub k/ of logistic equation is stable with respect to small perturbations when the sequence (b/sub k/) is nonnegative and convex.","PeriodicalId":438483,"journal":{"name":"2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHYCON.2003.1236839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The nonlinear logistic equation dy/dt=/spl epsiv/y(t) (1-/spl Sigma//sub k=0/ /sup n/b/sub k/y(t-/spl tau//sub k/), /spl epsiv/>0, b/sub k/, /spl tau//spl isin/(0;/spl infin/) (0/spl les/k/spl les/n) is discussed. The local stability of the nonzero stationary solution of this equation depends on the stability of linear equation dx/dt=-/spl Sigma//sub k=1/ /sup n/ a/sub k/x(t-/spl tau//sub k/), where a/sub k/=/spl epsiv/b/sub k///spl Sigma//sub j=0/ /sup n/b/sub j/ (0/spl les/k/spl les/n). It is shown that the condition /spl Sigma//sub k=1/ /sup n/a/sub k//spl tau//sub k/0, k=0,l, ..., n), then the stationary solution y/spl equiv/1//spl Sigma//sub k=0/ /sup n/b/sub k/ of logistic equation is stable with respect to small perturbations when the sequence (b/sub k/) is nonnegative and convex.
种群动力学时滞logistic方程的稳定性
讨论了非线性logistic方程dy/dt=/spl epsiv/y(t) (1-/spl Sigma//sub k=0/ /sup n/b/sub k/y(t-/spl tau//sub k/), /spl epsiv/>, b/sub k/, /spl tau//spl isin/(0;/spl infin/) (0/spl les/k/spl les/n)。该方程非零平稳解的局部稳定性取决于线性方程dx/dt=-/spl Sigma//下标k=1/ /sup n/ a/下标k/x(t-/spl tau//下标k/)的稳定性,其中a/下标k/=/spl epsiv/b/下标k///spl Sigma//下标j=0/ /sup n/b/下标j/ (0/spl les/k/spl les/n)。结果表明:/spl σ //下标k=1/ /sup n/a/下标k//spl τ //下标k/0, k= 0,1,…, n),则logistic方程的平稳解y/spl equiv/1//spl Sigma//下标k=0/ /sup n/b/下标k/当序列(b/下标k/)为非负凸时,对于小扰动是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信