{"title":"An approach to assessing peptide mass spectral quality without prior information","authors":"Fang-Xiang Wu, Jiarui Ding, G. Poirier","doi":"10.1504/IJFIPM.2008.020184","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to assessing the quality of tandem mass spectra without any prior information. The proposed approach includes: filtering noises from the experimental mass spectra and extracting the peaks; mapping each spectrum into a feature vector which describes the quality of spectra; classifying spectra into clusters by using the mean-shift clustering; learning a classifier using the two clusters with the extreme means; assessing all spectra by using the trained classifier. Computational experiments illustrate that the proposed approach can eliminate majority of poor quality spectra while losing very minority of high quality spectra.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2008.020184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes an approach to assessing the quality of tandem mass spectra without any prior information. The proposed approach includes: filtering noises from the experimental mass spectra and extracting the peaks; mapping each spectrum into a feature vector which describes the quality of spectra; classifying spectra into clusters by using the mean-shift clustering; learning a classifier using the two clusters with the extreme means; assessing all spectra by using the trained classifier. Computational experiments illustrate that the proposed approach can eliminate majority of poor quality spectra while losing very minority of high quality spectra.