An approach to assessing peptide mass spectral quality without prior information

Fang-Xiang Wu, Jiarui Ding, G. Poirier
{"title":"An approach to assessing peptide mass spectral quality without prior information","authors":"Fang-Xiang Wu, Jiarui Ding, G. Poirier","doi":"10.1504/IJFIPM.2008.020184","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to assessing the quality of tandem mass spectra without any prior information. The proposed approach includes: filtering noises from the experimental mass spectra and extracting the peaks; mapping each spectrum into a feature vector which describes the quality of spectra; classifying spectra into clusters by using the mean-shift clustering; learning a classifier using the two clusters with the extreme means; assessing all spectra by using the trained classifier. Computational experiments illustrate that the proposed approach can eliminate majority of poor quality spectra while losing very minority of high quality spectra.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2008.020184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes an approach to assessing the quality of tandem mass spectra without any prior information. The proposed approach includes: filtering noises from the experimental mass spectra and extracting the peaks; mapping each spectrum into a feature vector which describes the quality of spectra; classifying spectra into clusters by using the mean-shift clustering; learning a classifier using the two clusters with the extreme means; assessing all spectra by using the trained classifier. Computational experiments illustrate that the proposed approach can eliminate majority of poor quality spectra while losing very minority of high quality spectra.
一种没有先验信息的多肽质谱质量评估方法
本文提出了一种不需要任何先验信息的串联质谱质量评价方法。该方法包括:从实验质谱中滤除噪声并提取谱峰;将每个光谱映射成描述光谱质量的特征向量;利用均值移聚类对光谱进行聚类;利用极值均值的两个聚类学习分类器;使用训练好的分类器评估所有光谱。计算实验表明,该方法可以消除大部分质量较差的光谱,而丢失极少数质量较高的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信