Classification of ECG signals of normal and abnormal subjects using common spatial pattern

Latifah M. Aljafar, T. Alotaiby, Rand R. Al-Yami, S. Alshebeili, J. Zouhair
{"title":"Classification of ECG signals of normal and abnormal subjects using common spatial pattern","authors":"Latifah M. Aljafar, T. Alotaiby, Rand R. Al-Yami, S. Alshebeili, J. Zouhair","doi":"10.1109/ICEDSA.2016.7818547","DOIUrl":null,"url":null,"abstract":"In this paper, an ECG signal classification method is presented to classify multi-lead ECG signals into normal and abnormal classes using Common Spatial Pattern (CSP) as the feature extraction algorithm. The method consists of two main stages: CSP-based feature extraction and classification. After segmenting the signal into non-overlapping segments, each segment is projected onto a CSP projection matrix to extract the training and testing feature vectors. These vectors are used in the classification stage. In this study, three classifiers — linear discriminant analysis (LDA), naive Bayes (NB), and support vector machine (SVM)—were used. The proposed approach was evaluated using 104 subjects' recordings (52 normal and 52 abnormal) from the Physikalisch-Technische Bundesanstalt (PTB) dataset. The three classifiers achieved accuracy rates of 80.65%, 84%, and 100%, respectively.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, an ECG signal classification method is presented to classify multi-lead ECG signals into normal and abnormal classes using Common Spatial Pattern (CSP) as the feature extraction algorithm. The method consists of two main stages: CSP-based feature extraction and classification. After segmenting the signal into non-overlapping segments, each segment is projected onto a CSP projection matrix to extract the training and testing feature vectors. These vectors are used in the classification stage. In this study, three classifiers — linear discriminant analysis (LDA), naive Bayes (NB), and support vector machine (SVM)—were used. The proposed approach was evaluated using 104 subjects' recordings (52 normal and 52 abnormal) from the Physikalisch-Technische Bundesanstalt (PTB) dataset. The three classifiers achieved accuracy rates of 80.65%, 84%, and 100%, respectively.
利用共同空间模式对正常与异常受试者的心电信号进行分类
本文提出了一种利用公共空间模式(CSP)作为特征提取算法,将多导联心电信号分为正常和异常两类的心电信号分类方法。该方法主要包括两个阶段:基于csp的特征提取和分类。将信号分割成不重叠的片段后,将每个片段投影到CSP投影矩阵中,提取训练和测试特征向量。这些向量用于分类阶段。本研究使用了线性判别分析(LDA)、朴素贝叶斯(NB)和支持向量机(SVM)三种分类器。使用来自物理-技术-联邦数据集(PTB)的104名受试者记录(52名正常和52名异常)对所提出的方法进行了评估。这三种分类器的准确率分别为80.65%、84%和100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信