Cryptogenography

Joshua Brody, S. K. Jakobsen, Dominik Scheder, P. Winkler
{"title":"Cryptogenography","authors":"Joshua Brody, S. K. Jakobsen, Dominik Scheder, P. Winkler","doi":"10.1145/2554797.2554800","DOIUrl":null,"url":null,"abstract":"We consider the following cryptographic secret leaking problem. A group of players communicate with the goal of learning (and perhaps revealing) a secret held initially by one of them. Their conversation is monitored by a computationally unlimited eavesdropper, who wants to learn the identity of the secret-holder. Despite the unavailability of key, some protection can be provided to the identity of the secret-holder. We call the study of such communication problems, either from the group's or the eavesdropper's point of view, cryptogenography. We introduce a basic cryptogenography problem and show that two players can force the eavesdropper to missguess the origin of a secret bit with probability 1/3; we complement this with a hardness result showing that they cannot do better than than 3/8. We prove that larger numbers of players can do better than 0.5644, but no group of any size can achieve 0.75.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the following cryptographic secret leaking problem. A group of players communicate with the goal of learning (and perhaps revealing) a secret held initially by one of them. Their conversation is monitored by a computationally unlimited eavesdropper, who wants to learn the identity of the secret-holder. Despite the unavailability of key, some protection can be provided to the identity of the secret-holder. We call the study of such communication problems, either from the group's or the eavesdropper's point of view, cryptogenography. We introduce a basic cryptogenography problem and show that two players can force the eavesdropper to missguess the origin of a secret bit with probability 1/3; we complement this with a hardness result showing that they cannot do better than than 3/8. We prove that larger numbers of players can do better than 0.5644, but no group of any size can achieve 0.75.
我们考虑以下的密码秘密泄露问题。一群玩家交流的目标是了解(也许是揭露)最初由其中一人持有的秘密。他们的谈话被一个不受计算限制的窃听者监视,他想知道秘密持有者的身份。尽管无法获得密钥,但可以对秘密持有者的身份提供一定的保护。我们把对这种通信问题的研究,无论是从组织的角度还是从窃听者的角度,称为密码学。我们引入了一个基本的密码学问题,并证明两个玩家可以迫使窃听者以1/3的概率猜错秘密位的来源;我们用硬度结果来补充这一点,表明它们不能超过3/8。我们证明更多的玩家可以做得比0.5644更好,但任何规模的群体都无法达到0.75。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信