STeP: Scalable Tenant Placement for Managing Database-as-a-Service Deployments

Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, M. Stonebraker, D. DeWitt
{"title":"STeP: Scalable Tenant Placement for Managing Database-as-a-Service Deployments","authors":"Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, M. Stonebraker, D. DeWitt","doi":"10.1145/2987550.2987575","DOIUrl":null,"url":null,"abstract":"Public cloud providers with Database-as-a-Service offerings must efficiently allocate computing resources to each of their customers. An effective assignment of tenants both reduces the number of physical servers in use and meets customer expectations at a price point that is competitive in the cloud market. For public cloud vendors like Microsoft and Amazon, this means packing millions of users' databases onto hundreds or thousands of servers. This paper studies tenant placement by examining a publicly released dataset of anonymized customer resource usage statistics from Microsoft's Azure SQL Database production system over a three-month period. We implemented the STeP framework to ingest and analyze this large dataset. STeP allowed us to use this production dataset to evaluate several new algorithms for packing database tenants onto servers. These techniques produce highly efficient packings by collocating tenants with compatible resource usage patterns. The evaluation shows that under a production-sourced customer workload, these techniques are robust to variations in the number of nodes, keeping performance objective violations to a minimum even for high-density tenant packings. In comparison to the algorithm used in production at the time of data collection, our algorithms produce up to 90% fewer performance objective violations and save up to 32% of total operational costs for the cloud provider.","PeriodicalId":362207,"journal":{"name":"Proceedings of the Seventh ACM Symposium on Cloud Computing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987550.2987575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Public cloud providers with Database-as-a-Service offerings must efficiently allocate computing resources to each of their customers. An effective assignment of tenants both reduces the number of physical servers in use and meets customer expectations at a price point that is competitive in the cloud market. For public cloud vendors like Microsoft and Amazon, this means packing millions of users' databases onto hundreds or thousands of servers. This paper studies tenant placement by examining a publicly released dataset of anonymized customer resource usage statistics from Microsoft's Azure SQL Database production system over a three-month period. We implemented the STeP framework to ingest and analyze this large dataset. STeP allowed us to use this production dataset to evaluate several new algorithms for packing database tenants onto servers. These techniques produce highly efficient packings by collocating tenants with compatible resource usage patterns. The evaluation shows that under a production-sourced customer workload, these techniques are robust to variations in the number of nodes, keeping performance objective violations to a minimum even for high-density tenant packings. In comparison to the algorithm used in production at the time of data collection, our algorithms produce up to 90% fewer performance objective violations and save up to 32% of total operational costs for the cloud provider.
步骤:用于管理数据库即服务部署的可伸缩租户安置
提供数据库即服务(Database-as-a-Service)产品的公共云提供商必须有效地为每个客户分配计算资源。有效地分配租户既可以减少使用中的物理服务器数量,又可以以在云市场中具有竞争力的价格满足客户的期望。对于像微软和亚马逊这样的公共云供应商来说,这意味着将数百万用户的数据库打包到数百或数千台服务器上。本文通过检查微软Azure SQL数据库生产系统在三个月内公开发布的匿名客户资源使用统计数据集来研究租户安置。我们实现了STeP框架来摄取和分析这个大型数据集。STeP允许我们使用这个生产数据集来评估几种将数据库租户打包到服务器上的新算法。这些技术通过配置具有兼容资源使用模式的租户来产生高效的打包。评估表明,在生产来源的客户工作负载下,这些技术对节点数量的变化具有鲁棒性,即使对于高密度租户包装,也可以将性能目标违规降至最低。与数据收集时在生产中使用的算法相比,我们的算法产生的性能目标违规减少了90%,并为云提供商节省了32%的总运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信