Large Scale Data Clustering Using Memristive k-Median Computation

Yomi Karthik Rupesh, M. N. Bojnordi
{"title":"Large Scale Data Clustering Using Memristive k-Median Computation","authors":"Yomi Karthik Rupesh, M. N. Bojnordi","doi":"10.1109/PACT.2017.52","DOIUrl":null,"url":null,"abstract":"Clustering is a crucial tool for analyzing data in virtually every scientific and engineering discipline. The U.S. National Academy of Sciences (NAS) has recently announced \"the seven giants of statistical data analysis\" in which data clustering plays a central role [1]. This research also emphasizes that more scalable solutions are required to enable time and space clustering for the future large-scale data analyses. Therefore, hardware and software innovations are necessary to make the future large scale data analysis practical.This project proposes a novel mechanism for computing bit serial medians within resistive RAM (RRAM) arrays with no need to read out the operands from memory cells.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering is a crucial tool for analyzing data in virtually every scientific and engineering discipline. The U.S. National Academy of Sciences (NAS) has recently announced "the seven giants of statistical data analysis" in which data clustering plays a central role [1]. This research also emphasizes that more scalable solutions are required to enable time and space clustering for the future large-scale data analyses. Therefore, hardware and software innovations are necessary to make the future large scale data analysis practical.This project proposes a novel mechanism for computing bit serial medians within resistive RAM (RRAM) arrays with no need to read out the operands from memory cells.
基于记忆k-中值计算的大规模数据聚类
聚类在几乎所有科学和工程学科中都是分析数据的关键工具。美国国家科学院(NAS)最近公布了“统计数据分析的七大巨头”,其中数据聚类在其中起着核心作用。该研究还强调,需要更多可扩展的解决方案来实现未来大规模数据分析的时间和空间集群。因此,硬件和软件的创新是必要的,以使未来的大规模数据分析切实可行。本计画提出一种在电阻式随机存取存储器(RRAM)阵列中计算位序列中位数的新机制,而无需从储存单元中读出操作数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信