A Feature Subset Based Decision Fusion Approach for Scene Classification Using Color, Spectral, and Texture Statistics

A. Turlapaty, Hema Kumar Goru, B. Gokaraju
{"title":"A Feature Subset Based Decision Fusion Approach for Scene Classification Using Color, Spectral, and Texture Statistics","authors":"A. Turlapaty, Hema Kumar Goru, B. Gokaraju","doi":"10.1109/IACC.2017.0132","DOIUrl":null,"url":null,"abstract":"Content Based Image Retrieval (CBIR) deals withthe automatic extraction of images from a database based ona query. For efficient retrieval the digital image CBIR requiressupport of scene classification algorithms. The Cognitive psychology suggests that the basic level classification is efficient withthe global features. However, a detailed classification requires acombination of the global and the local features. In this paper, we propose a decision fusion of the classification results based onlocal and global features. The proposed algorithm is a multi stageapproach, in the stage-1 the algorithm separates the completedatabase into natural and artificial images using spectral features. In the stage-2, the texture and color features are used to furtherclassify the image database into subcategories. The results of theproposed decision fusion algorithm give a 5% better classificationaccuracy than the single best classifier.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Content Based Image Retrieval (CBIR) deals withthe automatic extraction of images from a database based ona query. For efficient retrieval the digital image CBIR requiressupport of scene classification algorithms. The Cognitive psychology suggests that the basic level classification is efficient withthe global features. However, a detailed classification requires acombination of the global and the local features. In this paper, we propose a decision fusion of the classification results based onlocal and global features. The proposed algorithm is a multi stageapproach, in the stage-1 the algorithm separates the completedatabase into natural and artificial images using spectral features. In the stage-2, the texture and color features are used to furtherclassify the image database into subcategories. The results of theproposed decision fusion algorithm give a 5% better classificationaccuracy than the single best classifier.
基于特征子集的基于颜色、光谱和纹理统计的场景分类决策融合方法
基于内容的图像检索(CBIR)是一种基于查询从数据库中自动提取图像的方法。为了有效地检索数字图像,需要场景分类算法的支持。认知心理学认为,基本层次分类具有全局特征,效率高。然而,详细的分类需要将全局特征和局部特征结合起来。本文提出了一种基于局部和全局特征的分类结果决策融合方法。该算法是一个多阶段的方法,在第一阶段,该算法利用光谱特征将完整的数据库分为自然图像和人工图像。在第二阶段,利用纹理和颜色特征对图像数据库进行进一步分类。结果表明,所提出的决策融合算法比单一最佳分类器的分类准确率提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信