PINCO: a pipelined in-network compression scheme for data collection in wireless sensor networks

Tarik Arici, B. Gedik, Y. Altunbasak, Ling Liu
{"title":"PINCO: a pipelined in-network compression scheme for data collection in wireless sensor networks","authors":"Tarik Arici, B. Gedik, Y. Altunbasak, Ling Liu","doi":"10.1109/ICCCN.2003.1284221","DOIUrl":null,"url":null,"abstract":"In this paper, we present PINCO, an in-network compression scheme for energy constrained, distributed, wireless sensor networks. PINCO reduces redundancy in the data collected from sensors, thereby decreasing the wireless communication among the sensor nodes and saving energy. Sensor data is buffered in the network and combined through a pipelined compression scheme into groups of data, while satisfying a user-specified end-to-end latency bound. We introduce a PINCO scheme for single-valued sensor readings. In this scheme, each group of data is a highly flexible structure so that compressed data can be recompressed without decompressing, in order to reduce newly available redundancy at a different stage of the network. We discuss how PINCO parameters affect its performance, and how to tweak them for different performance requirements. We also include a performance study demonstrating the advantages of our approach over other data collection schemes based on simulation and prototype deployment results.","PeriodicalId":168378,"journal":{"name":"Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No.03EX712)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No.03EX712)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2003.1284221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

In this paper, we present PINCO, an in-network compression scheme for energy constrained, distributed, wireless sensor networks. PINCO reduces redundancy in the data collected from sensors, thereby decreasing the wireless communication among the sensor nodes and saving energy. Sensor data is buffered in the network and combined through a pipelined compression scheme into groups of data, while satisfying a user-specified end-to-end latency bound. We introduce a PINCO scheme for single-valued sensor readings. In this scheme, each group of data is a highly flexible structure so that compressed data can be recompressed without decompressing, in order to reduce newly available redundancy at a different stage of the network. We discuss how PINCO parameters affect its performance, and how to tweak them for different performance requirements. We also include a performance study demonstrating the advantages of our approach over other data collection schemes based on simulation and prototype deployment results.
PINCO:一种用于无线传感器网络中数据采集的网络内流水线压缩方案
在本文中,我们提出了PINCO,一种用于能量受限的分布式无线传感器网络的网络内压缩方案。PINCO减少了从传感器收集的数据的冗余,从而减少了传感器节点之间的无线通信,节省了能源。传感器数据在网络中被缓冲,并通过流水线压缩方案组合成数据组,同时满足用户指定的端到端延迟限制。我们介绍了一种单值传感器读数的PINCO方案。在该方案中,每组数据都是一个高度灵活的结构,因此压缩后的数据可以在不解压缩的情况下被重新压缩,以减少网络不同阶段的新可用冗余。我们讨论了PINCO参数如何影响其性能,以及如何根据不同的性能要求调整它们。我们还包括一项性能研究,展示了我们的方法相对于其他基于仿真和原型部署结果的数据收集方案的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信