Gesture keyboard with a machine learning requiring only one camera

Taichi Murase, Atsunori Moteki, Genta Suzuki, T. Nakai, N. Hara, Takahiro Matsuda
{"title":"Gesture keyboard with a machine learning requiring only one camera","authors":"Taichi Murase, Atsunori Moteki, Genta Suzuki, T. Nakai, N. Hara, Takahiro Matsuda","doi":"10.1145/2160125.2160154","DOIUrl":null,"url":null,"abstract":"In this paper, the authors propose a novel gesture-based virtual keyboard (Gesture Keyboard) that uses a standard QWERTY keyboard layout, and requires only one camera, and employs a machine learning technique. Gesture Keyboard tracks the user's fingers and recognizes finger motions to judge keys input in the horizontal direction. Real-Adaboost (Adaptive Boosting), a machine learning technique, uses HOG (Histograms of Oriented Gradients) features in an image of the user's hands to estimate keys in the depth direction. Each virtual key follows a corresponding finger, so it is possible to input characters at the user's preferred hand position even if the user displaces his hands while inputting data. Additionally, because Gesture Keyboard requires only one camera, keyboard-less devices can implement this system easily. We show the effectiveness of utilizing a machine learning technique for estimating depth.","PeriodicalId":407457,"journal":{"name":"International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2160125.2160154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, the authors propose a novel gesture-based virtual keyboard (Gesture Keyboard) that uses a standard QWERTY keyboard layout, and requires only one camera, and employs a machine learning technique. Gesture Keyboard tracks the user's fingers and recognizes finger motions to judge keys input in the horizontal direction. Real-Adaboost (Adaptive Boosting), a machine learning technique, uses HOG (Histograms of Oriented Gradients) features in an image of the user's hands to estimate keys in the depth direction. Each virtual key follows a corresponding finger, so it is possible to input characters at the user's preferred hand position even if the user displaces his hands while inputting data. Additionally, because Gesture Keyboard requires only one camera, keyboard-less devices can implement this system easily. We show the effectiveness of utilizing a machine learning technique for estimating depth.
带有机器学习功能的手势键盘只需要一个摄像头
在本文中,作者提出了一种新的基于手势的虚拟键盘(Gesture keyboard),它使用标准的QWERTY键盘布局,只需要一个摄像头,并采用了机器学习技术。手势键盘跟踪用户的手指,并识别手指的动作,以判断键盘在水平方向上的输入。Real-Adaboost(自适应增强)是一种机器学习技术,它利用用户手的图像中的HOG(定向梯度直方图)特征来估计深度方向上的键。每个虚拟键都跟随一个相应的手指,因此即使用户在输入数据时移动了他的手,也可以在用户喜欢的手位置输入字符。此外,因为手势键盘只需要一个摄像头,所以无键盘设备可以很容易地实现这个系统。我们展示了利用机器学习技术估计深度的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信