Almost tight upper bounds for vertical decompositions in four dimensions

V. Koltun
{"title":"Almost tight upper bounds for vertical decompositions in four dimensions","authors":"V. Koltun","doi":"10.1109/SFCS.2001.959880","DOIUrl":null,"url":null,"abstract":"We show that the complexity of the vertical decomposition of an arrangement of n fixed-degree algebraic surfaces or surface patches in four dimensions is O(n/sup 4+/spl epsi//) for any /spl epsi/ > 0. This improves the best previously known upper bound for this problem by a near-linear factor, and settles a major problem in the theory of arrangements of surfaces, open since 1989. The new bound can be extended to higher dimensions, yielding the bound O (n/sup 2d-4+/spl epsi//), for any /spl epsi/ > 0, on the complexity of vertical decompositions in dimensions d /spl ges/ 4. We also describe the immediate algorithmic applications of these results, which include improved algorithms for point location, range searching, ray shooting, robot motion planning, and some geometric optimization problems.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

We show that the complexity of the vertical decomposition of an arrangement of n fixed-degree algebraic surfaces or surface patches in four dimensions is O(n/sup 4+/spl epsi//) for any /spl epsi/ > 0. This improves the best previously known upper bound for this problem by a near-linear factor, and settles a major problem in the theory of arrangements of surfaces, open since 1989. The new bound can be extended to higher dimensions, yielding the bound O (n/sup 2d-4+/spl epsi//), for any /spl epsi/ > 0, on the complexity of vertical decompositions in dimensions d /spl ges/ 4. We also describe the immediate algorithmic applications of these results, which include improved algorithms for point location, range searching, ray shooting, robot motion planning, and some geometric optimization problems.
四维垂直分解的上界几乎很紧
我们证明了在四维空间中,对于任意/spl epsi/ > 0, n个定度代数曲面或面块排列的垂直分解复杂度为O(n/sup 4+/spl epsi//)。这通过一个近线性因子改进了这个问题的上界,并解决了自1989年以来开放的曲面排列理论中的一个主要问题。对于d /spl ges/ 4维垂直分解的复杂度,新界可以推广到更高的维度,得到对于任意/spl epsi/ > 0的界O (n/sup 2d-4+/spl epsi//)。我们还描述了这些结果的直接算法应用,包括点定位、范围搜索、射线拍摄、机器人运动规划和一些几何优化问题的改进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信