An image retrieval approach with relevance feedback

Ke Chen, Zhiyong Xiong, X. Xian, Fusheng Yu
{"title":"An image retrieval approach with relevance feedback","authors":"Ke Chen, Zhiyong Xiong, X. Xian, Fusheng Yu","doi":"10.1109/CSAE.2011.5952938","DOIUrl":null,"url":null,"abstract":"An image retrieval approach combined with relevance feedback is proposed. A set of blobs that are generated from image features using clustering can be used to describe an image. Given a training set of images with annotations, we apply probabilistic models to predict the probability of a blob in image according to the query words. For improving the initial query results, we apply a relevance feedback mechanism to bridge the semantic gap, leading to the improved image retrieval accuracy. A support vector machine classifier can be learned from training data of relevance images and irrelevance images labeled by users. Experimental results show that the proposed approach obtains higher retrieval accuracy than a commonly used approach.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An image retrieval approach combined with relevance feedback is proposed. A set of blobs that are generated from image features using clustering can be used to describe an image. Given a training set of images with annotations, we apply probabilistic models to predict the probability of a blob in image according to the query words. For improving the initial query results, we apply a relevance feedback mechanism to bridge the semantic gap, leading to the improved image retrieval accuracy. A support vector machine classifier can be learned from training data of relevance images and irrelevance images labeled by users. Experimental results show that the proposed approach obtains higher retrieval accuracy than a commonly used approach.
一种具有相关反馈的图像检索方法
提出了一种结合相关反馈的图像检索方法。使用聚类从图像特征生成的一组blob可以用来描述图像。给定一个带有注释的图像训练集,我们根据查询词应用概率模型来预测图像中斑点的概率。为了改善初始查询结果,我们采用了相关反馈机制来弥补语义差距,从而提高了图像检索的准确性。支持向量机分类器可以从用户标记的相关图像和不相关图像的训练数据中学习。实验结果表明,该方法比常用方法具有更高的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信