Proposing a Machine Learning Approach to Analyze and Predict Employment and its Factors

F. García-Peñalvo, Juan Cruz-Benito, Martín Martín-González, Andrea Vázquez-Ingelmo, José Carlos Sánchez Prieto, Roberto Therón
{"title":"Proposing a Machine Learning Approach to Analyze and Predict Employment and its Factors","authors":"F. García-Peñalvo, Juan Cruz-Benito, Martín Martín-González, Andrea Vázquez-Ingelmo, José Carlos Sánchez Prieto, Roberto Therón","doi":"10.9781/IJIMAI.2018.02.002","DOIUrl":null,"url":null,"abstract":"This paper presents an original study with the aim of propose and test a machine learning approach to research \nabout employability and employment. To understand how the graduates get employed, researchers propose to \nbuild predictive models using machine learning algorithms, extracting after that the most relevant factors that \ndescribe the model and employing further analysis techniques like clustering to get deeper insights. To test \nthe proposal, is presented a case study that involves data from the Spanish Observatory for Employability and \nEmployment (OEEU). Using data from this project (information about 3000 students), has been built predictive \nmodels that define how these students get a job after finalizing their degrees. The results obtained in this case \nstudy are very promising, and encourage authors to refine the process and validate it in further research.","PeriodicalId":143152,"journal":{"name":"Int. J. Interact. Multim. Artif. Intell.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Multim. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/IJIMAI.2018.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

This paper presents an original study with the aim of propose and test a machine learning approach to research about employability and employment. To understand how the graduates get employed, researchers propose to build predictive models using machine learning algorithms, extracting after that the most relevant factors that describe the model and employing further analysis techniques like clustering to get deeper insights. To test the proposal, is presented a case study that involves data from the Spanish Observatory for Employability and Employment (OEEU). Using data from this project (information about 3000 students), has been built predictive models that define how these students get a job after finalizing their degrees. The results obtained in this case study are very promising, and encourage authors to refine the process and validate it in further research.
提出一种机器学习方法来分析和预测就业及其因素
本文提出了一项原创研究,旨在提出并测试一种机器学习方法来研究就业能力和就业。为了了解毕业生如何就业,研究人员建议使用机器学习算法建立预测模型,然后提取描述模型的最相关因素,并采用聚类等进一步分析技术来获得更深入的见解。为了验证这一建议,本文提出了一个案例研究,该研究涉及西班牙就业能力和就业观察站(OEEU)的数据。利用这个项目的数据(大约3000名学生的信息),已经建立了预测模型,来定义这些学生在完成学位后如何找到工作。在这个案例研究中得到的结果是非常有希望的,并鼓励作者改进该过程并在进一步的研究中验证它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信