Quick Minimization of Tardy Processing Time on a Single Machine

B. Schieber, Pranav Sitaraman
{"title":"Quick Minimization of Tardy Processing Time on a Single Machine","authors":"B. Schieber, Pranav Sitaraman","doi":"10.48550/arXiv.2301.05460","DOIUrl":null,"url":null,"abstract":"We consider the problem of minimizing the total processing time of tardy jobs on a single machine. This is a classical scheduling problem, first considered by [Lawler and Moore 1969], that also generalizes the Subset Sum problem. Recently, it was shown that this problem can be solved efficiently by computing $(\\max,\\min)$-skewed-convolutions. The running time of the resulting algorithm is equivalent, up to logarithmic factors, to the time it takes to compute a $(\\max,\\min)$-skewed-convolution of two vectors of integers whose sum is $O(P)$, where $P$ is the sum of the jobs' processing times. We further improve the running time of the minimum tardy processing time computation by introducing a job ``bundling'' technique and achieve a $\\tilde{O}\\left(P^{2-1/\\alpha}\\right)$ running time, where $\\tilde{O}\\left(P^\\alpha\\right)$ is the running time of a $(\\max,\\min)$-skewed-convolution of vectors of size $P$. This results in a $\\tilde{O}\\left(P^{7/5}\\right)$ time algorithm for tardy processing time minimization, an improvement over the previously known $\\tilde{O}\\left(P^{5/3}\\right)$ time algorithm.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.05460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of minimizing the total processing time of tardy jobs on a single machine. This is a classical scheduling problem, first considered by [Lawler and Moore 1969], that also generalizes the Subset Sum problem. Recently, it was shown that this problem can be solved efficiently by computing $(\max,\min)$-skewed-convolutions. The running time of the resulting algorithm is equivalent, up to logarithmic factors, to the time it takes to compute a $(\max,\min)$-skewed-convolution of two vectors of integers whose sum is $O(P)$, where $P$ is the sum of the jobs' processing times. We further improve the running time of the minimum tardy processing time computation by introducing a job ``bundling'' technique and achieve a $\tilde{O}\left(P^{2-1/\alpha}\right)$ running time, where $\tilde{O}\left(P^\alpha\right)$ is the running time of a $(\max,\min)$-skewed-convolution of vectors of size $P$. This results in a $\tilde{O}\left(P^{7/5}\right)$ time algorithm for tardy processing time minimization, an improvement over the previously known $\tilde{O}\left(P^{5/3}\right)$ time algorithm.
在单台机器上快速最小化延迟处理时间
我们考虑在一台机器上最小化延迟作业的总处理时间的问题。这是一个经典的调度问题,首先由[Lawler和Moore 1969]提出,它也推广了子集和问题。最近,研究表明,通过计算$(\max,\min)$ -倾斜卷积可以有效地解决这个问题。结果算法的运行时间相当于计算两个整数向量的$(\max,\min)$ -skew -卷积所需的时间,这两个整数向量的和为$O(P)$,其中$P$是作业处理时间的总和。我们通过引入作业“捆绑”技术进一步改进了最小延迟处理时间计算的运行时间,并实现了$\tilde{O}\left(P^{2-1/\alpha}\right)$运行时间,其中$\tilde{O}\left(P^\alpha\right)$是大小为$P$的向量的$(\max,\min)$ -倾斜卷积的运行时间。这就产生了用于延迟处理时间最小化的$\tilde{O}\left(P^{7/5}\right)$时间算法,这是对先前已知的$\tilde{O}\left(P^{5/3}\right)$时间算法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信