Sparse support faces

B. Biggio, Marco Melis, G. Fumera, F. Roli
{"title":"Sparse support faces","authors":"B. Biggio, Marco Melis, G. Fumera, F. Roli","doi":"10.1109/ICB.2015.7139053","DOIUrl":null,"url":null,"abstract":"Many modern face verification algorithms use a small set of reference templates to save memory and computational resources. However, both the reference templates and the combination of the corresponding matching scores are heuristically chosen. In this paper, we propose a well-principled approach, named sparse support faces, that can outperform state-of-the-art methods both in terms of recognition accuracy and number of required face templates, by jointly learning an optimal combination of matching scores and the corresponding subset of face templates. For each client, our method learns a support vector machine using the given matching algorithm as the kernel function, and determines a set of reference templates, that we call support faces, corresponding to its support vectors. It then drastically reduces the number of templates, without affecting recognition accuracy, by learning a set of virtual faces as well-principled transformations of the initial support faces. The use of a very small set of support face templates makes the decisions of our approach also easily interpretable for designers and end users of the face verification system.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many modern face verification algorithms use a small set of reference templates to save memory and computational resources. However, both the reference templates and the combination of the corresponding matching scores are heuristically chosen. In this paper, we propose a well-principled approach, named sparse support faces, that can outperform state-of-the-art methods both in terms of recognition accuracy and number of required face templates, by jointly learning an optimal combination of matching scores and the corresponding subset of face templates. For each client, our method learns a support vector machine using the given matching algorithm as the kernel function, and determines a set of reference templates, that we call support faces, corresponding to its support vectors. It then drastically reduces the number of templates, without affecting recognition accuracy, by learning a set of virtual faces as well-principled transformations of the initial support faces. The use of a very small set of support face templates makes the decisions of our approach also easily interpretable for designers and end users of the face verification system.
稀疏支撑面
许多现代人脸验证算法使用一组小的参考模板来节省内存和计算资源。然而,参考模板和相应匹配分数的组合都是启发式选择的。在本文中,我们提出了一种原则良好的方法,称为稀疏支持面,它可以通过共同学习匹配分数和相应的人脸模板子集的最佳组合,在识别精度和所需的人脸模板数量方面优于最先进的方法。对于每个客户端,我们的方法使用给定的匹配算法作为核函数来学习一个支持向量机,并确定一组参考模板,我们称之为支持面,对应于它的支持向量。然后,它通过学习一组虚拟面孔作为初始支持面孔的良好原则转换,在不影响识别准确性的情况下大幅减少模板的数量。使用一组非常小的支持面部模板,使得我们的方法也很容易为设计师和面部验证系统的最终用户解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信