Comparison of the Data-based and Gene Ontology-Based Approaches to Cluster Validation Methods for Gene Microarrays

N. Bolshakova, Anton Zamolotskikh, P. Cunningham
{"title":"Comparison of the Data-based and Gene Ontology-Based Approaches to Cluster Validation Methods for Gene Microarrays","authors":"N. Bolshakova, Anton Zamolotskikh, P. Cunningham","doi":"10.1109/CBMS.2006.69","DOIUrl":null,"url":null,"abstract":"The paper presents a comparison of the data-based and gene ontology (GO)-based approaches to cluster validation methods for gene microarray analysis. We apply a homogeneous approach to obtaining metrics from different GO-based similarity measures and a normalization of validation index values, that allows us to compare them to each other as well as to data-based validation indices. The results show strong correlation between both GO-based and data-based validation indices. The results suggest that this may represent an effective tool to support biomedical knowledge discovery tasks based on gene expression data","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"44 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper presents a comparison of the data-based and gene ontology (GO)-based approaches to cluster validation methods for gene microarray analysis. We apply a homogeneous approach to obtaining metrics from different GO-based similarity measures and a normalization of validation index values, that allows us to compare them to each other as well as to data-based validation indices. The results show strong correlation between both GO-based and data-based validation indices. The results suggest that this may represent an effective tool to support biomedical knowledge discovery tasks based on gene expression data
基于数据和基于基因本体的基因微阵列聚类验证方法比较
本文介绍了基于数据和基于基因本体(GO)的基因微阵列分析聚类验证方法的比较。我们采用同质方法从不同的基于go的相似性度量和验证指标值的规范化中获得度量,这使我们能够将它们相互比较以及基于数据的验证指数进行比较。结果表明,基于go的验证指标和基于数据的验证指标之间存在很强的相关性。结果表明,这可能是支持基于基因表达数据的生物医学知识发现任务的有效工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信