Development of space-borne transportable high-finesse Fabry–Pérot cavity and its performance in ultra-stable laser

C. Xing, J. Xiong, P. Zhao, Jiuchang Deng, Z. Cui, Fanchao Meng, Lingqiang Meng, J. Jia
{"title":"Development of space-borne transportable high-finesse Fabry–Pérot cavity and its performance in ultra-stable laser","authors":"C. Xing, J. Xiong, P. Zhao, Jiuchang Deng, Z. Cui, Fanchao Meng, Lingqiang Meng, J. Jia","doi":"10.1117/12.2683956","DOIUrl":null,"url":null,"abstract":"A domestic space-borne transportable FP cavity is designed. The cavity length is 100 mm with the shape of a cube. Spacer is made of ultra-low expansion glass. This cavity is four-point mounting and heat insulated from external environmental fluctuation. To judge the performance of this cavity, an ultra-stable laser based on this cavity was constructed, the frequency noise of which is below 30Hz/√ Hz, which can fulfill the requirements of the Taiji-2 mission.","PeriodicalId":184319,"journal":{"name":"Optical Frontiers","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2683956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A domestic space-borne transportable FP cavity is designed. The cavity length is 100 mm with the shape of a cube. Spacer is made of ultra-low expansion glass. This cavity is four-point mounting and heat insulated from external environmental fluctuation. To judge the performance of this cavity, an ultra-stable laser based on this cavity was constructed, the frequency noise of which is below 30Hz/√ Hz, which can fulfill the requirements of the Taiji-2 mission.
星载可移动高精细度法布里-帕氏腔的研制及其在超稳定激光中的性能
设计了国产星载可移动FP腔体。空腔长度为100mm,形状为立方体。垫片采用超低膨胀玻璃。该腔体为四点安装,与外部环境波动隔热。为了判断该腔体的性能,基于该腔体构建了频率噪声低于30Hz/√Hz的超稳定激光器,能够满足“太极-2”任务的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信