ICAMF: Improved Context-Aware Matrix Factorization for Collaborative Filtering

Jiyun Li, Pengcheng Feng, Juntao Lv
{"title":"ICAMF: Improved Context-Aware Matrix Factorization for Collaborative Filtering","authors":"Jiyun Li, Pengcheng Feng, Juntao Lv","doi":"10.1109/ICTAI.2013.20","DOIUrl":null,"url":null,"abstract":"Context-aware recommender system (CARS) can provide more accurate rating predictions and more relevant recommendations by taking into account the contextual in-formation. Yet the state-of-the-art context-aware matrix factorization approaches only consider the influence of con-textual information on item bias. Tensor factorization based Multiverse Recommendation deals with the contextual in-formation by incorporating user-item-context interaction into recommendation model. However, all of these approaches cannot fully capture the influence of contextual information on the rating. In this paper, we propose two improved context-aware matrix factorization approaches to fully capture the influence of contextual information on the rating. Both of the baseline predictors (user bias and item bias) and user-item-context interaction are fully concerned. Experimental results on three semi-synthetic datasets and one real world dataset show that the two proposed approaches outperform Multiverse Recommendation and the state-of-the-art context-aware matrix factorization methods in prediction performance.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Context-aware recommender system (CARS) can provide more accurate rating predictions and more relevant recommendations by taking into account the contextual in-formation. Yet the state-of-the-art context-aware matrix factorization approaches only consider the influence of con-textual information on item bias. Tensor factorization based Multiverse Recommendation deals with the contextual in-formation by incorporating user-item-context interaction into recommendation model. However, all of these approaches cannot fully capture the influence of contextual information on the rating. In this paper, we propose two improved context-aware matrix factorization approaches to fully capture the influence of contextual information on the rating. Both of the baseline predictors (user bias and item bias) and user-item-context interaction are fully concerned. Experimental results on three semi-synthetic datasets and one real world dataset show that the two proposed approaches outperform Multiverse Recommendation and the state-of-the-art context-aware matrix factorization methods in prediction performance.
改进的上下文感知矩阵分解协同过滤
上下文感知推荐系统(CARS)可以通过考虑上下文信息提供更准确的评级预测和更相关的推荐。然而,最先进的情境感知矩阵分解方法只考虑情境信息对项目偏见的影响。基于张量分解的多元宇宙推荐通过将用户-物品-上下文交互纳入推荐模型来处理上下文信息。然而,所有这些方法都不能完全捕捉上下文信息对评级的影响。在本文中,我们提出了两种改进的上下文感知矩阵分解方法,以充分捕捉上下文信息对评级的影响。基线预测因子(用户偏差和项目偏差)和用户-项目-上下文交互都得到了充分的关注。在三个半合成数据集和一个真实世界数据集上的实验结果表明,两种方法在预测性能上优于多元宇宙推荐和最先进的上下文感知矩阵分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信