Diagnosis of Alzheimer's disease from MR images using relevance feedback

C.B. Akgul, D. Unay, A. Ekin
{"title":"Diagnosis of Alzheimer's disease from MR images using relevance feedback","authors":"C.B. Akgul, D. Unay, A. Ekin","doi":"10.1109/SIU.2009.5136500","DOIUrl":null,"url":null,"abstract":"In this work, we present a learning framework to help early diagnosis of Alzheimer's disease (AD) from magnetic resonance images. Our approach relies on a nearest neighbor (NN) procedure where the similarity measure is obtained via on-line supervised learning. We propose two alternative approaches to learn the similarities between cases. Several experiments on OASIS database establish that, even with weak global visual descriptors and small training sets, this framework has better diagnostic performance than standard classification based approaches and enjoys a certain degree of robustness against incorrect relevance judgments.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we present a learning framework to help early diagnosis of Alzheimer's disease (AD) from magnetic resonance images. Our approach relies on a nearest neighbor (NN) procedure where the similarity measure is obtained via on-line supervised learning. We propose two alternative approaches to learn the similarities between cases. Several experiments on OASIS database establish that, even with weak global visual descriptors and small training sets, this framework has better diagnostic performance than standard classification based approaches and enjoys a certain degree of robustness against incorrect relevance judgments.
利用相关反馈从MR图像诊断阿尔茨海默病
在这项工作中,我们提出了一个学习框架,以帮助从磁共振图像中早期诊断阿尔茨海默病(AD)。我们的方法依赖于最近邻(NN)过程,其中相似性度量是通过在线监督学习获得的。我们提出了两种不同的方法来了解案例之间的相似之处。在OASIS数据库上的实验表明,即使在较弱的全局视觉描述符和较小的训练集下,该框架也比基于标准分类的方法具有更好的诊断性能,并且对不正确的相关性判断具有一定的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信