Ring pole assignment and variance-constrained synthetical control for random constant system

Guowan Zhang
{"title":"Ring pole assignment and variance-constrained synthetical control for random constant system","authors":"Guowan Zhang","doi":"10.1109/MEC.2011.6026021","DOIUrl":null,"url":null,"abstract":"By using the Moore-Penrose inverse and the singular value decomposition theory, in this paper, the author designed controllers make the eigenvalues of the closed-loop system located in a ring of the unit circle, and the variance of each steady state compose to the given constraint. And author derives the existing sufficient and necessary conditions and the expression of solution by a modified algebraic Lyapunov matrix equation. The corresponding numerical example explains this method designed in practical engineering control system possible.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6026021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By using the Moore-Penrose inverse and the singular value decomposition theory, in this paper, the author designed controllers make the eigenvalues of the closed-loop system located in a ring of the unit circle, and the variance of each steady state compose to the given constraint. And author derives the existing sufficient and necessary conditions and the expression of solution by a modified algebraic Lyapunov matrix equation. The corresponding numerical example explains this method designed in practical engineering control system possible.
随机常数系统环极点配置与方差约束综合控制
本文利用Moore-Penrose逆和奇异值分解理论,设计了控制器,使闭环系统的特征值位于单位圆的一个环内,各稳态的方差构成给定的约束。并利用一个改进的代数Lyapunov矩阵方程,导出了其存在的充要条件和解的表达式。相应的数值算例说明了该方法设计在实际工程控制系统中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信