Selection of Area and Collect Required Data for Power Prediction of a Solar Plant

Shubham Soni, R. Bindal
{"title":"Selection of Area and Collect Required Data for Power Prediction of a Solar Plant","authors":"Shubham Soni, R. Bindal","doi":"10.1109/DELCON57910.2023.10127372","DOIUrl":null,"url":null,"abstract":"Solar energy is an economical, user-friendly, and practical solution to the global energy dilemma, electricity generates by using solar energy. It can be possible by using two methods- direct method and indirect method. In the direct approach, Photovoltaic modules convert solar irradiation into the form of electrical energy and by indirect technique, concentrated solar power (CSP) collects thermal energy using facilities such as parabolic troughs and Linear Fresnel collectors. To improve the strength of solar power systems, this research focuses on the improvement of accuracy neural network algorithms like NARX and Back Propagation (BP). NARX and BP are utilized for solar energy prediction and solar energy costs can be minimized when improvement is provided to the solar plant efficiently. According to the simulation findings, NARX based neural network increases the solar energy efficiency and better prediction of power when compared to previous or BP methods.","PeriodicalId":193577,"journal":{"name":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELCON57910.2023.10127372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is an economical, user-friendly, and practical solution to the global energy dilemma, electricity generates by using solar energy. It can be possible by using two methods- direct method and indirect method. In the direct approach, Photovoltaic modules convert solar irradiation into the form of electrical energy and by indirect technique, concentrated solar power (CSP) collects thermal energy using facilities such as parabolic troughs and Linear Fresnel collectors. To improve the strength of solar power systems, this research focuses on the improvement of accuracy neural network algorithms like NARX and Back Propagation (BP). NARX and BP are utilized for solar energy prediction and solar energy costs can be minimized when improvement is provided to the solar plant efficiently. According to the simulation findings, NARX based neural network increases the solar energy efficiency and better prediction of power when compared to previous or BP methods.
太阳能电站功率预测的面积选择与数据采集
太阳能是一种经济、易用、实用的解决全球能源困境的方法,利用太阳能发电。可以采用直接法和间接法两种方法。在直接方法中,光伏组件将太阳辐射转换为电能的形式,通过间接技术,聚光太阳能(CSP)利用抛物线槽和线性菲涅耳收集器等设施收集热能。为了提高太阳能发电系统的强度,本研究重点研究了NARX和BP等精度神经网络算法的改进。NARX和BP被用于太阳能预测,当对太阳能发电厂进行有效改进时,太阳能成本可以降到最低。仿真结果表明,与之前的BP方法相比,基于NARX的神经网络提高了太阳能效率,并更好地预测了功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信