HierClasSArt: Knowledge-Aware Hierarchical Classification of Scholarly Articles

Mehwish Alam, Russa Biswas, Yiyi Chen, D. Dessí, Genet Asefa Gesese, Fabian Hoppe, Harald Sack
{"title":"HierClasSArt: Knowledge-Aware Hierarchical Classification of Scholarly Articles","authors":"Mehwish Alam, Russa Biswas, Yiyi Chen, D. Dessí, Genet Asefa Gesese, Fabian Hoppe, Harald Sack","doi":"10.1145/3442442.3451365","DOIUrl":null,"url":null,"abstract":"A huge number of scholarly articles published every day in different domains makes it hard for the experts to organize and stay updated with the new research in a particular domain. This study gives an overview of a new approach, HierClasSArt, for knowledge aware hierarchical classification of the scholarly articles for mathematics into a predefined taxonomy. The method uses combination of neural networks and Knowledge Graphs for better document representation along with the meta-data information. This position paper further discusses the open problems about incorporation of new articles and evolving hierarchies in the pipeline. Mathematics domain has been used as a use-case.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A huge number of scholarly articles published every day in different domains makes it hard for the experts to organize and stay updated with the new research in a particular domain. This study gives an overview of a new approach, HierClasSArt, for knowledge aware hierarchical classification of the scholarly articles for mathematics into a predefined taxonomy. The method uses combination of neural networks and Knowledge Graphs for better document representation along with the meta-data information. This position paper further discusses the open problems about incorporation of new articles and evolving hierarchies in the pipeline. Mathematics domain has been used as a use-case.
学术文章的知识感知层次分类
每天在不同领域发表的大量学术文章使得专家很难组织和更新特定领域的新研究。本研究概述了一种新的方法,HierClasSArt,用于将数学学术文章的知识感知分层分类到预定义的分类法中。该方法将神经网络和知识图谱相结合,以更好地表示文档和元数据信息。本立场文件进一步讨论了关于在管道中合并新文章和不断发展的层次结构的开放问题。数学领域被用作一个用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信