A Friend Recommendation Algorithm Based on Multiple Factors in LBSNs

Tiancheng Zhang, Wei Wang, D. Yue, Ge Yu
{"title":"A Friend Recommendation Algorithm Based on Multiple Factors in LBSNs","authors":"Tiancheng Zhang, Wei Wang, D. Yue, Ge Yu","doi":"10.1109/WISA.2015.35","DOIUrl":null,"url":null,"abstract":"In location-based social networks, the current friend recommendation algorithms just take a relatively single factor into account without comprehensive evaluations. To solve this problem, we design a framework - Multiple Heterogeneous Social Network (MHSN) according to users' profiles, check-in records and interests. Based on this framework, we propose a friend recommendation model which consider multiple factors, including 1) a detecting model based on interest similarity by using users' check-in records, 2) a social distance calculation method based on users' social relationship, 3) a clustering method based on users' check-in location information to measure the similarity among clusters. The top-k friends who satisfy the above conditions will be recommended to the target users. We evaluated our method using Foursquare data-sets and the results showed that our friend recommendation algorithm is more feasible and effective.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In location-based social networks, the current friend recommendation algorithms just take a relatively single factor into account without comprehensive evaluations. To solve this problem, we design a framework - Multiple Heterogeneous Social Network (MHSN) according to users' profiles, check-in records and interests. Based on this framework, we propose a friend recommendation model which consider multiple factors, including 1) a detecting model based on interest similarity by using users' check-in records, 2) a social distance calculation method based on users' social relationship, 3) a clustering method based on users' check-in location information to measure the similarity among clusters. The top-k friends who satisfy the above conditions will be recommended to the target users. We evaluated our method using Foursquare data-sets and the results showed that our friend recommendation algorithm is more feasible and effective.
LBSNs中基于多因素的好友推荐算法
在基于位置的社交网络中,目前的好友推荐算法只考虑了相对单一的因素,没有进行全面的评估。为了解决这个问题,我们根据用户的个人资料、签到记录和兴趣设计了一个框架——多异构社交网络(MHSN)。在此框架下,我们提出了一种考虑多种因素的好友推荐模型,包括1)基于用户签到记录的兴趣相似性检测模型,2)基于用户社会关系的社交距离计算方法,3)基于用户签到位置信息的聚类方法来度量聚类之间的相似性。满足上述条件的top-k好友将被推荐给目标用户。我们使用Foursquare的数据集对我们的方法进行了评估,结果表明我们的朋友推荐算法更加可行和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信