Phased Array Diagnostics by TR-MUSIC Approach by a Reduced Set of Measurements

Mario Del Prete
{"title":"Phased Array Diagnostics by TR-MUSIC Approach by a Reduced Set of Measurements","authors":"Mario Del Prete","doi":"10.1109/PIERS59004.2023.10221538","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of planar phased array antenna diagnostics from near-field measurements is addressed by a Time Reversal-MUltiple SIgnal Classification (TR-MUSIC) based algorithm using a steering diversity. It is shown that the number of degrees of freedom limits the diagnostic scenarios in which the TR-MUSIC works. A difference model allows to overcome this limitation and at the same time can reduce the data required for diagnostics. Finally, numerical examples show the effectiveness of the proposed method.","PeriodicalId":354610,"journal":{"name":"2023 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS59004.2023.10221538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of planar phased array antenna diagnostics from near-field measurements is addressed by a Time Reversal-MUltiple SIgnal Classification (TR-MUSIC) based algorithm using a steering diversity. It is shown that the number of degrees of freedom limits the diagnostic scenarios in which the TR-MUSIC works. A difference model allows to overcome this limitation and at the same time can reduce the data required for diagnostics. Finally, numerical examples show the effectiveness of the proposed method.
基于简化测量集的TR-MUSIC相控阵诊断方法
针对平面相控阵天线的近场诊断问题,提出了一种基于时间反向多信号分类(TR-MUSIC)的转向分集算法。结果表明,自由度的数量限制了TR-MUSIC工作的诊断场景。差异模型可以克服这一限制,同时可以减少诊断所需的数据。最后,通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信