{"title":"Composition analysis and identification of ancient glass objects based on neural network models","authors":"Jianing Li, Yunfei Zhu","doi":"10.1109/ICCECE58074.2023.10135338","DOIUrl":null,"url":null,"abstract":"This paper presents a model based on a 3-layer feedforward neural network, which effectively preserves the characteristics of the chemical content of each category in ancient glass through 3 fully connected layers. The average prediction rate of the model was 96.43%, which was 2.43% higher than the traditional KNN classification model, 3.42% higher than the support vector machine (SVM) model and 8.43% higher than the random forest model, demonstrating the efficiency of the model.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a model based on a 3-layer feedforward neural network, which effectively preserves the characteristics of the chemical content of each category in ancient glass through 3 fully connected layers. The average prediction rate of the model was 96.43%, which was 2.43% higher than the traditional KNN classification model, 3.42% higher than the support vector machine (SVM) model and 8.43% higher than the random forest model, demonstrating the efficiency of the model.