Modeling Graph Structure via Relative Position for Text Generation from Knowledge Graphs

Martin Schmitt, Leonardo Ribeiro, Philipp Dufter, Iryna Gurevych, Hinrich Schütze
{"title":"Modeling Graph Structure via Relative Position for Text Generation from Knowledge Graphs","authors":"Martin Schmitt, Leonardo Ribeiro, Philipp Dufter, Iryna Gurevych, Hinrich Schütze","doi":"10.18653/V1/11.TEXTGRAPHS-1.2","DOIUrl":null,"url":null,"abstract":"We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating the detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.","PeriodicalId":332938,"journal":{"name":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/11.TEXTGRAPHS-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating the detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.
基于相对位置的知识图文本生成图结构建模
我们提出了Graformer,一种新颖的基于transformer的编码器-解码器架构,用于图形到文本的生成。利用我们新颖的图自关注,节点的编码依赖于输入图中的所有节点,而不仅仅是直接邻居,从而促进了全局模式的检测。我们将两个节点之间的关系表示为它们之间最短路径的长度。Graformer学习为不同的注意头对这些节点-节点关系进行不同的加权,因此实际上学习了输入图的不同连接视图。我们在两个流行的图形到文本生成基准(AGENDA和WebNLG)上对Graformer进行了评估,它在使用比其他方法少得多的参数的情况下实现了强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信