Enabling Robot-assisted Motion Capture with Human Scale Tracking Optimization

Pascal Chiu, Jiawei Huang, Y. Kitamura
{"title":"Enabling Robot-assisted Motion Capture with Human Scale Tracking Optimization","authors":"Pascal Chiu, Jiawei Huang, Y. Kitamura","doi":"10.1145/3489849.3489881","DOIUrl":null,"url":null,"abstract":"Motion tracking systems with viewpoint concerns or whose marker data include unreliable states have proven difficult to use despite many impactful benefits. We propose a technique inspired by active vision and using a customized hill-climbing approach to control a robot-sensor setup and apply it to a magnetic induction system capable of occlusion-free motion tracking. Our solution reduces the impact of displacement and orientation issues for markers which inherently present a dead-angle range that disturbs usability and accuracy. The resulting interface is successful in stabilizing previously unexploitable data while preventing sub-optimal states for up to hundreds of occurrences per recording and featuring an approximate 40% decrease in tracking error.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motion tracking systems with viewpoint concerns or whose marker data include unreliable states have proven difficult to use despite many impactful benefits. We propose a technique inspired by active vision and using a customized hill-climbing approach to control a robot-sensor setup and apply it to a magnetic induction system capable of occlusion-free motion tracking. Our solution reduces the impact of displacement and orientation issues for markers which inherently present a dead-angle range that disturbs usability and accuracy. The resulting interface is successful in stabilizing previously unexploitable data while preventing sub-optimal states for up to hundreds of occurrences per recording and featuring an approximate 40% decrease in tracking error.
使机器人辅助运动捕捉与人体尺度跟踪优化
具有视点关注点或其标记数据包括不可靠状态的运动跟踪系统已被证明难以使用,尽管有许多有影响的好处。我们提出了一种受主动视觉启发的技术,并使用定制的爬坡方法来控制机器人传感器设置,并将其应用于能够无遮挡运动跟踪的磁感应系统。我们的解决方案减少了位移和方向问题对标记的影响,这些标记固有的死角范围会干扰可用性和准确性。由此产生的接口成功地稳定了以前不可利用的数据,同时防止每次记录出现多达数百次的次优状态,并使跟踪错误减少了约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信