Evidence-based object tracking via global energy maximization

J. Carter, P. Lappas, R. Damper
{"title":"Evidence-based object tracking via global energy maximization","authors":"J. Carter, P. Lappas, R. Damper","doi":"10.1109/ICASSP.2003.1199521","DOIUrl":null,"url":null,"abstract":"This paper describes a robust algorithm for arbitrary object tracking in long image sequences. This technique extends the dynamic Hough transform proposed in our earlier work to detect arbitrary shapes undergoing affine motion. The proposed tracking algorithm processes the whole image sequence globally. First, the object boundary is represented in lookup-table form, and we then perform an operation that estimates the energy of the motion trajectory in the parameter space. We assign an extra term in our cost function to incorporate smoothness of deformation. The object is actually rigid, so by 'deformation' we mean changes due to rotation or scaling of the object. There is no need for training or initialization, and an efficient implementation can be achieved with coarse-to-fine dynamic programming and pruning. The method, because of its evidence-based nature, is robust under noise and occlusion.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1199521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a robust algorithm for arbitrary object tracking in long image sequences. This technique extends the dynamic Hough transform proposed in our earlier work to detect arbitrary shapes undergoing affine motion. The proposed tracking algorithm processes the whole image sequence globally. First, the object boundary is represented in lookup-table form, and we then perform an operation that estimates the energy of the motion trajectory in the parameter space. We assign an extra term in our cost function to incorporate smoothness of deformation. The object is actually rigid, so by 'deformation' we mean changes due to rotation or scaling of the object. There is no need for training or initialization, and an efficient implementation can be achieved with coarse-to-fine dynamic programming and pruning. The method, because of its evidence-based nature, is robust under noise and occlusion.
基于全局能量最大化的循证目标跟踪
本文提出了一种鲁棒的长图像序列中任意目标跟踪算法。该技术扩展了我们早期工作中提出的动态霍夫变换,以检测发生仿射运动的任意形状。所提出的跟踪算法对整个图像序列进行全局处理。首先,以查询表的形式表示目标边界,然后在参数空间中进行运动轨迹能量估计的运算。我们在我们的代价函数中分配了一个额外的项来包含变形的平滑性。对象实际上是刚性的,所以我们所说的“变形”是指由于对象的旋转或缩放而发生的变化。不需要训练或初始化,并且可以通过粗到细的动态规划和剪枝来实现有效的实现。该方法基于证据,在噪声和遮挡下具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信