Optimization of 6Slots-7Poles & 12Slots-14Poles flux-switching permanent magnet machines for plug-in HEV

E. Sulaiman, M. Omar, S. Hakami
{"title":"Optimization of 6Slots-7Poles & 12Slots-14Poles flux-switching permanent magnet machines for plug-in HEV","authors":"E. Sulaiman, M. Omar, S. Hakami","doi":"10.1109/ICCEREC.2016.7814968","DOIUrl":null,"url":null,"abstract":"Plug-in hybrid electric vehicle (PHEV) is independent of the internal combustion engine but acts as the auxiliary unit mostly on the electric drive system. Main while, the Flux-switching permanent magnet machine (FSPMM) has been studied in terms of structure with its operation principle been analyzed. To achieve a higher torque with a corresponding high power density and lower torque ripple, FSPMM with 6Slots-7Poles and 12Slots-14Poles, according investigations, are optimized based on their objective functions. Moreover, it analyzes several typical performance curves, such as cogging torque, flux linkage and back-EMF. Finally, the torque and corresponding power, efficiency and rotor mechanical strength analysis of optimized designed are obtained. The results indicate that FSPMM is a viable candidate for PHEV and also has good mechanical robustness with strong flux-weakening ability.","PeriodicalId":431878,"journal":{"name":"2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2016.7814968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plug-in hybrid electric vehicle (PHEV) is independent of the internal combustion engine but acts as the auxiliary unit mostly on the electric drive system. Main while, the Flux-switching permanent magnet machine (FSPMM) has been studied in terms of structure with its operation principle been analyzed. To achieve a higher torque with a corresponding high power density and lower torque ripple, FSPMM with 6Slots-7Poles and 12Slots-14Poles, according investigations, are optimized based on their objective functions. Moreover, it analyzes several typical performance curves, such as cogging torque, flux linkage and back-EMF. Finally, the torque and corresponding power, efficiency and rotor mechanical strength analysis of optimized designed are obtained. The results indicate that FSPMM is a viable candidate for PHEV and also has good mechanical robustness with strong flux-weakening ability.
插电式混合动力用6槽-7极和12槽-14极磁通开关永磁电机的优化
插电式混合动力汽车(PHEV)是一种独立于内燃机的汽车,在电力驱动系统中主要充当辅助装置。同时,对磁通开关永磁电机(FSPMM)的结构进行了研究,分析了其工作原理。为了获得更高的转矩、更高的功率密度和更低的转矩脉动,根据研究结果,对6Slots-7Poles和12Slots-14Poles的FSPMM进行了目标函数优化。分析了齿槽转矩、磁链和反电动势等几种典型性能曲线。最后对优化设计后的转矩及相应的功率、效率和转子机械强度进行了分析。结果表明,FSPMM具有良好的机械鲁棒性和较强的消通量能力,是插电式混合动力系统的可行候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信