A Cyber-Physical System Approach for Predictive Maintenance

K. Meesublak, Tosapol Klinsukont
{"title":"A Cyber-Physical System Approach for Predictive Maintenance","authors":"K. Meesublak, Tosapol Klinsukont","doi":"10.1109/SmartIoT49966.2020.00061","DOIUrl":null,"url":null,"abstract":"Cyber-Physical System (CPS) is considered as one of the main enablers for Industry 4.0. CPS technology integrates knowledge from multiple domains, and bridges the gap between the Physical and the Cyber worlds. Predictive Maintenance (PdM), a crucial application within Industry 4.0, can take a CPS-based approach with intelligent operations to minimize machine downtimes and associated costs. This paper discusses challenges of PdM implementation and evaluates performance of the Convolutional Neural Network (CNN) algorithm in fault diagnosis of a PdM system.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cyber-Physical System (CPS) is considered as one of the main enablers for Industry 4.0. CPS technology integrates knowledge from multiple domains, and bridges the gap between the Physical and the Cyber worlds. Predictive Maintenance (PdM), a crucial application within Industry 4.0, can take a CPS-based approach with intelligent operations to minimize machine downtimes and associated costs. This paper discusses challenges of PdM implementation and evaluates performance of the Convolutional Neural Network (CNN) algorithm in fault diagnosis of a PdM system.
预测性维护的信息物理系统方法
信息物理系统(CPS)被认为是工业4.0的主要推动者之一。CPS技术集成了来自多个领域的知识,并在物理世界和网络世界之间架起了桥梁。预测性维护(PdM)是工业4.0中的一个关键应用,可以采用基于cps的方法进行智能操作,以最大限度地减少机器停机时间和相关成本。本文讨论了PdM实现的挑战,并评估了卷积神经网络(CNN)算法在PdM系统故障诊断中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信