Differential Privacy in Quantum Computation

Li Zhou, M. Ying
{"title":"Differential Privacy in Quantum Computation","authors":"Li Zhou, M. Ying","doi":"10.1109/CSF.2017.23","DOIUrl":null,"url":null,"abstract":"More and more quantum algorithms have been designed for solving problems in machine learning, database search and data analytics. An important problem then arises: how privacy can be protected when these algorithms are used on private data? For classical computing, the notion of differential privacy provides a very useful conceptual framework in which a great number of mechanisms that protect privacy by introducing certain noises into algorithms have been successfully developed. This paper defines a notion of differential privacy for quantum information processing. We carefully examine how the mechanisms using three important types of quantum noise, the amplitude/phase damping and depolarizing, can protect differential privacy. A composition theorem is proved that enables us to combine multiple privacy-preserving operations in quantum information processing.","PeriodicalId":269696,"journal":{"name":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2017.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

More and more quantum algorithms have been designed for solving problems in machine learning, database search and data analytics. An important problem then arises: how privacy can be protected when these algorithms are used on private data? For classical computing, the notion of differential privacy provides a very useful conceptual framework in which a great number of mechanisms that protect privacy by introducing certain noises into algorithms have been successfully developed. This paper defines a notion of differential privacy for quantum information processing. We carefully examine how the mechanisms using three important types of quantum noise, the amplitude/phase damping and depolarizing, can protect differential privacy. A composition theorem is proved that enables us to combine multiple privacy-preserving operations in quantum information processing.
量子计算中的差分隐私
越来越多的量子算法被设计用于解决机器学习、数据库搜索和数据分析中的问题。那么一个重要的问题就出现了:当这些算法用于私人数据时,如何保护隐私?对于经典计算,差分隐私的概念提供了一个非常有用的概念框架,在这个框架中,通过在算法中引入某些噪声来保护隐私的大量机制已经成功地开发出来。本文定义了量子信息处理中的微分隐私概念。我们仔细研究了使用三种重要类型的量子噪声(振幅/相位阻尼和去极化)的机制如何保护差分隐私。证明了一个组合定理,使我们能够将量子信息处理中的多个隐私保护操作组合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信