Asymptotic Analysis of Marginal-Likelihood Based Estimators for m-Dependent Processes

Y. Noam, J. Tabrikian
{"title":"Asymptotic Analysis of Marginal-Likelihood Based Estimators for m-Dependent Processes","authors":"Y. Noam, J. Tabrikian","doi":"10.1109/EEEI.2006.321070","DOIUrl":null,"url":null,"abstract":"This paper derives and analyzes the asymptotic performances of the maximum-likelihood (ML) estimator derived under the assumption of independent identically distribution (i.i.d.) samples, where in the actual model the signal samples are m-dependent. The ML under such a modeling mismatch is based on the marginal likelihood function, and is referred to as marginal maximum likelihood (MML). Under some regularity conditions, the asymptotical distribution of the MML is derived. The asymptotical distributions in some signal processing examples are analyzed. Simulation results support the theory via an example.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper derives and analyzes the asymptotic performances of the maximum-likelihood (ML) estimator derived under the assumption of independent identically distribution (i.i.d.) samples, where in the actual model the signal samples are m-dependent. The ML under such a modeling mismatch is based on the marginal likelihood function, and is referred to as marginal maximum likelihood (MML). Under some regularity conditions, the asymptotical distribution of the MML is derived. The asymptotical distributions in some signal processing examples are analyzed. Simulation results support the theory via an example.
m相关过程的边际似然估计的渐近分析
本文推导并分析了在独立同分布(i.i.d)样本假设下得到的最大似然(ML)估计量的渐近性能,而在实际模型中信号样本是m相关的。这种建模不匹配下的ML基于边际似然函数,称为边际最大似然(MML)。在一些正则性条件下,导出了MML的渐近分布。分析了一些信号处理实例中的渐近分布。通过一个算例,仿真结果支持了该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信