Towards robust Machine Learning models for grape ripeness assessment

Véronique M. Gomes, P. Melo-Pinto
{"title":"Towards robust Machine Learning models for grape ripeness assessment","authors":"Véronique M. Gomes, P. Melo-Pinto","doi":"10.1109/JCSSE53117.2021.9493822","DOIUrl":null,"url":null,"abstract":"Artificial intelligence methods need to be more transparent for wider acceptance by the industry. In particular deep neural networks (DNN) are not explainable, due to the complex processes the input undergo. The present work addresses model explainability for wine grapes quality assessment through 1D-CNN, using regression activation maps (RAM) to show the contribution score of each wavelength for the prediction of sugar content. This way we identify the relevant regions related to this enological parameter. The results obtained indicate that the proposed approach can successfully highlight important spectral regions related to sugars absorption, improving the current state of the art, and opening way to dimensionality reduction methods and further model interpretation.","PeriodicalId":437534,"journal":{"name":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE53117.2021.9493822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial intelligence methods need to be more transparent for wider acceptance by the industry. In particular deep neural networks (DNN) are not explainable, due to the complex processes the input undergo. The present work addresses model explainability for wine grapes quality assessment through 1D-CNN, using regression activation maps (RAM) to show the contribution score of each wavelength for the prediction of sugar content. This way we identify the relevant regions related to this enological parameter. The results obtained indicate that the proposed approach can successfully highlight important spectral regions related to sugars absorption, improving the current state of the art, and opening way to dimensionality reduction methods and further model interpretation.
用于葡萄成熟度评估的鲁棒机器学习模型
人工智能方法需要更加透明,才能被行业更广泛地接受。特别是深度神经网络(DNN)是不可解释的,因为输入过程复杂。目前的工作通过1D-CNN解决了酿酒葡萄质量评估的模型可解释性,使用回归激活图(RAM)来显示每个波长对糖含量预测的贡献分数。通过这种方式,我们可以确定与这个酿酒参数相关的相关区域。结果表明,该方法可以成功地突出与糖吸收相关的重要光谱区域,改善了目前的技术水平,并为降维方法和进一步的模型解释开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信